Chapter Ten

By the early 1950s, three computers had made their way into the marketplace.

In England, a second Ferranti Mark 1 was ordered for the Atomic Energy Research Establishment, near Oxford, to be delivered in 1952. But after the Labour government headed by Clement Atlee was thrown out in October 1951, the new Tory government, headed by Winston Churchill, canceled all government contracts worth more than a hundred thousand pounds, and so the second Ferranti machine was never completed. Work on the computer was halted, and it was later bought for very little by the University of Toronto. However, seven other Ferranti computers (of a slightly different design) were sold, one to Shell Labs in Amsterdam. But it was not only expense that killed the development of computers in England, it was also vigilant secrecy. According to Kirwan Cox, the Canadian filmmaker, because Churchill had found himself quoted in Mein Kampf about how England had won the First World War, he “became paranoid about information that had enabled the British victory getting out again.” Presumably, the enemy to be wary of was now the Soviet Union.

There was much more money and much more self-promotion in the United States. In March 1951 UNIVAC became available, and in 1952 the IBM 701 was unveiled at the end of April. The 701 was an offshoot of von Neumann’s IAS computer. Like the IAS, it used Williams tubes for memory (72 in one version, 144 in another). It was intended for use as a scientific calculator (and had been known while in development as the “Defense Calculator”). The 701 was joined by the 702, the 650, and the 705. The 701 and the 650 were designed for business use; IBM seemed destined to consolidate a share of what was turning out to be an actual market, but then, in the November presidential election between Dwight D. Eisenhower and Adlai Stevenson, the UNIVAC scored a big public relations victory when it predicted the outcome for CBS based on early returns. The PR coup might have been designed by an advertising agency—at first the UNIVAC’s predictions looked so out of whack that network operators fiddled with them in order to avoid embarrassment, but then the network had to admit even greater embarrassment—the original unfiddled predictions turned out to be very close to the actual results of the election. When CBS revealed what had happened on the air, UNIVAC became the face of the computer in the 1950s public imagination, and the result for Remington Rand was more sales, this time lucrative ones, to companies rather than to the government.

IBM had two commercial advantages, though: one was the punch-card system that many offices already had in place, and the other was the business model, which focused upon leasing and service rather than outright sales. It looked as though IBM was to dominate the business market and foil von Neumann’s plan for the computer to be based upon common intellectual property rather than proprietary patents.

But von Neumann’s dissemination of the ideas behind ENIAC meant that there were people working on designing and building computers all over the United States—challenges to the original ENIAC patents by Control Data, Honeywell, Burroughs, General Electric, RCA, and National Cash Register began almost immediately, and they meant that the ENIAC patents (which made more than a hundred proprietary claims) were slow to be awarded to Remington Rand, who had obtained them when they bought out Mauchly and Eckert.

In October 1953, Pres Eckert published an article on computer memory in the Journal of the Institute of Radio Engineers in which he knowledgeably described the structure and the function of the ABC’s memory system and also expressed admiration for its frugality: “There may have been similar systems prior to Atanasoff’s, but none was as inexpensive to construct.” Eckert’s article served to motivate the patent department at IBM, which, like the smaller companies, had come to believe that Eckert and Mauchly’s ENIAC patents might be broken. Clifford Berry learned that IBM was looking for information about “capacitor drum storage devices,” or, as Atanasoff had called his invention, “regenerative memory.” Berry’s work on the ABC was known at Consolidated Engineering, his place of business in Pasadena, and what the IBM representative learned from a lawyer in the patent office at Berry’s company was the subject of an IBM in-house memorandum of September 30, 1953—Consolidated Engineering planned to visit Iowa State and look into Berry’s claims. IBM decided to collaborate on this investigation. The Consolidated Engineering patent attorney also informed IBM that “he had heard rumors that Burroughs, National Cash, and IBM were planning, as part of a team, to form a patent pool, particularly with a view of fighting the Eckert-Mauchly patents.” Kirwan Cox believes that the sequence of events was slightly different—Berry saw Eckert’s article, read the patent, and told his employer that the patent was based on the prior art of the ABC. Consolidated Engineering was already doing business with IBM, and so contacted IBM about the apparent patent infringement. The younger Thomas J. Watson, much more interested in computers than his father had been, was eager to circumvent the ENIAC patents. In April 1954, a representative from IBM interviewed Clifford Berry in California. On June 14, when he visited Atanasoff in Frederick, Maryland, the IBM representative, a man named A. J. Etienne, even said, “If you will help us, we will break the Mauchly-Eckert computer patent; it was derived from you.”

According to Burton, Atanasoff was floored by this declaration—he had believed Mauchly when he told him at the Naval Ordnance Lab eleven years earlier that the new computer he and Eckert were developing was different from the ABC and “better” than the ABC. But Etienne seemed to know what he was talking about. He said that the particular patent that IBM wanted to challenge was the patent for the memory system—that is, the rotating drum with the rows of capacitors that were regenerated by vacuum tubes. This patent had been finally issued to Remington Rand in the previous year, 1953; possibly IBM knew that Atanasoff had invented this memory system, so this was the patent that they chose to challenge. Etienne asked Atanasoff for all of the relevant paperwork concerning the ABC, but thirteen years, a war, a divorce, and several moves had intervened, and Atanasoff was unable to find what he needed immediately. On June 21, Etienne sent him a copy of Eckert and Mauchly’s patent and Atanasoff wrote back, promising to get him as much of the paperwork as he could. But he never heard from Etienne again, and as far as he knew, the patent challenge was dropped. When Atanasoff read through Eckert and Mauchly’s patent, he saw that it was based on his ideas, but he assumed the case was dropped because the IBM lawyers had decided that breaking the patent was not feasible.

It was not that IBM had decided that breaking the patent was not feasible; rather, they had decided to make a secret deal with Remington Rand. The deal was to be beneficial for both parties—UNIVAC mostly used an awkward and unfamiliar magnetic tape system for external storage of data; most offices in the market for a computer already had lots of data punched onto IBM cards, and the IBM 650 used these cards. It was not as powerful a computer as UNIVAC, but because of the punch-card storage system, it was a successful entry into the business computer market. But IBM was sued under antitrust laws for using leasing agreements and proprietary punch-card systems to monopolize the office machine market. The solution seemed to be that IBM would sign a consent decree with Remington Rand. The two companies sued each other for patent access. In the meantime, in 1955, Sperry, originally a company specializing in aviation and navigation products (such as gyroscopes, but also the ball turret gun mounted underneath the B-17 during the war), bought Remington Rand.

About two years after Etienne’s contact with Atanasoff, IBM entered into a private agreement with Sperry Rand, agreeing to pay $10 million over eight years in exchange for access to the ENIAC patents. Once the agreement had been signed, IBM and Sperry aggressively pursued what they considered patent violations by other companies.

However, IBM and Sperry Rand were busy looking around for other computer ideas. One man whom Konrad Zuse had impressed with the Z4, Helmut Goeze, had married an American woman and moved to the United States. Goeze not only knew that the Z4 could calculate, he knew the amazing tale of its journey from Berlin to Austria at the end of the war. As Zuse writes, “Now in the United States, Goeze wanted to lend his support to this world-important something.” Somehow, Goeze contacted Thomas J. Watson, Sr., who in turn contacted Hollerith Germany, an IBM subsidiary.1 Representatives from Hollerith Germany visited Zuse and the Z4, but they wanted neither the machine nor Zuse’s services—they wanted his intellectual property rights. Over the course of the next year, Zuse negotiated with the company, and as it happened he did make a nice sum of money, in part because the negotiations took so long, and in part because the sum negotiated was in reichsmarks—by the time he cashed the check, reichsmarks had become deutschemarks, which were worth twice as much as reichsmarks. But Hollerith Germany would not hire Zuse for any kind of research—it seems clear in retrospect that throughout the fifties, IBM’s main interest was in cornering the computer market. Zuse did get a research grant from Remington Rand, but it was for a technology that Zuse felt was already superseded—mechanical switching. Zuse thought that he got the grant simply because Remington Rand “still did not completely trust their own [ENIAC-based] electronics, so they wanted to have more than one egg in their basket, just in case.”

John von Neumann was busy, too, but not on the computer. Once the cold war arms race was well under way, he devoted more and more of his time to advising the United States government, and he gained more and more influence. He may have decided that he had done what he could for computers and that, as Max Newman felt, they were now in the hands of the engineers. And then, in the summer of 1955, he suffered a spontaneous shoulder fracture. That August, he learned that he had a tumor on his left clavicle, probably a metastasis from undiagnosed pancreatic cancer. There was some suspicion that his illness was the result of radiation exposure during his time in A-bomb labs. He was not yet fifty-two. By November 1956 he was in a wheelchair, and by January 1957 he was in and out of the hospital with brain cancer (the Atomic Energy Commission posted a security guard by the door to his hospital room for fear that he would reveal atomic secrets when he was “screaming in horror”). But he continued to advise the government from his deathbed and died on February 8, not quite three years after Turing.

In early 1959, an IBM official sent an inquiry to Sperry, asking to see the copy of Clifford Berry’s master’s thesis, “Design of Electrical Data Recording and Reading Mechanisms,” which Sperry had obtained in 1953 and in which Berry described the ABC’s regenerative memory. This alerted Sperry, and a Sperry vice president, R. H. Sorensen, began to poke around—he called Iowa State to inquire about the ABC. According to Kirwan Cox, Sperry also hired Howard Aiken to go to Iowa State and look into the matter—he would have, of course, discovered that the ABC had been dismantled. Sorensen took Atanasoff to lunch at the exclusive and elegant Cosmos Club in Washington, D.C. After the lunch, Sorensen sent an in-house memo that conceded that the patents Sperry had inherited from Mauchly and Eckert did overlap with technology already realized in the ABC, but as a result of his meeting with Atanasoff, he doubted that Atanasoff would pursue any legal action—Atanasoff had tried to interest Sorensen in another idea he had for a calculating machine that would have some characteristics of a desktop calculator and some characteristics of a punch-card electronic tabulator. Sorensen politely put him off. Atanasoff was not as gullible as Sorensen thought, however, because after the lunch, he obtained copies of the patents in question, and he saw that they did replicate work that he had done on the ABC. He then went back to his own ordnance business, but not without stowing his new information in a safe place.

Atanasoff’s Ordnance Engineering Corporation had prospered. In 1956, it was bought for a healthy sum by Aerojet General Corporation, a California company specializing in rocket propulsion technology. Atanasoff took half the proceeds in cash and half in stock—subsequently, the stock split so many times that Atanasoff became a wealthy man. For a few years, Atanasoff worked as vice president and head of the East Coast division, and then, in 1960, he was offered the chance to head the space division, which he turned down. Corporate life did not suit him in several ways—later he said, “I did not want to spend the rest of my life selling and it looked as if the principal effort of the Vice-president of Aerojet was to sell.” Now with plenty of money after a life of frugality, he decided to retire. He was fifty-eight. He immediately embarked upon several projects—he purchased two hundred acres in Maryland and began to design and build an innovative house of a more-than-modern design that incorporated just the sort of unorthodox ideas that a man like Atanasoff would want in his dream house—not only energy-efficient cooling and heating systems and a functional layout, but also tilt-up panel construction and an eight-hundred-pound front door that rotated on brass bearings. He continued to involve himself in the lives of his grandchildren, which could be, according to Burton, less than comfortable for them. She writes, “Retirement mellowed Atanasoff very little, and he remained intense and challenging to others. One reporter described him as ‘creative and cantankerous,’ while his daughter Joanne postulated that ‘conflict was his favorite pastime’ … He enjoyed testing people and was fond of drawing friends and family into intense discussions—or arguments—as a means by which to grade their mental acuity … he kept tabs on his grandchildren’s schoolwork and carved out time during visits to test us on pertinent material.”

By 1960, Turing and von Neumann were dead, Arthur Burks was teaching philosophy at the University of Michigan, Max Newman had returned to topology, and Mauchly and Eckert had failed at owning and running their own computer business (though Mauchly had run the UNIVAC division at Sperry until 1959, then started his own consulting firm). Mauchly had received an honorary doctorate from the University of Pennsylvania, the Scott Medal from the Franklin Institute, and other Philadelphia-based awards. Eckert was still with Sperry Rand (he stayed with Sperry, and then Unisys, until 1989). Neither Mauchly nor Eckert had profited directly from the ENIAC patent, but they did get credit (and they did seek that credit) for inventing the computer. Eckert, in particular, was vocal about the inaccuracy of the phrase “von Neumann architecture”—he thought it should be called “Eckert architecture.” But the vagaries of patent law and the delay in awarding the Eckert and Mauchly patents seemed to be working for Sperry. If the patent had been awarded in 1947, it would have run out by 1964, before computers became big business. However, in 1960, the patent was still being challenged. It would not be finally awarded until 1964. At that point, it looked as though it would run into the eighties.

Zuse finally got to visit the United States and see what computers had been and were being built there, when he and his partner, Harro Stucken, accompanied their mechanical punch calculator test model to Sperry Rand headquarters in Norwalk, Connecticut. Although Zuse understood that the future of computers was electronic, he had contrived a method of doing mathematical operations on punch cards that allowed as many as ten cards to operate simultaneously. It was a mechanical calculator, but it was fast and cleverly conceived, and even though it was never put into mass production, it provided Zuse with funding for his company. Among those they got to visit were General Leslie Groves, who had run the Manhattan Project, and Howard Aiken, who was still advocating using decimal numbers for computers. Zuse writes, “At Harvard they were still completely convinced that the computer was an American invention.” Some years later, Aiken wrote to Zuse, acknowledging the foresight of his earlier ideas. They were also taken to see the Whirlwind at MIT and were most impressed by its size.2 But Zuse’s business connections were Swiss more than American, and eventually the Z4, after years in a barn in the Austrian Alps, and thanks to the man in the elegant automobile, it was sent to Zurich, “the sixth transport we put it through.” When the day came to demonstrate it, the Z4 started sparking and then went dead during an afternoon test run. Zuse and his partners did not panic, though—they discovered that the problem had to do with a newly installed transformer and fixed it: “We had exactly a half an hour to correct the error and replace the burned out lines. We did it, aired out the faint burning smell, and at four o’clock our illustrious guests witnessed a perfect demonstration.” Eventually, Zuse came to have his “fondest memories” of his years in Zurich. He admired his colleagues, and his computer continued to operate so reliably that it could be left on, unattended, overnight. He writes, “Many a night, I walked through the lonely streets of Zurich, on my way to check on the Z4. It was a strange feeling, entering the deserted ETH3 and hearing, already by the time I reached the first floor, that, on the top floor, the Z4 was still running perfectly. In those days you could tell from the rhythm of the punched tape reader.”

In 1962, Richard Kohler Richards, who had a doctorate in electrical engineering, had worked at IBM, and had written several books on computers including Arithmetic Operations in Digital Computers and Digital Computer Components and Circuits, decided to return to Ames, where he had been an undergraduate at Iowa State, and write a book about the history of the computer. His neighbor turned out to be a man named Harry Burrell, who remembered writing a press release about the Atanasoff-Berry Computer around the time that the Des Moines Tribune ran a brief article, with a picture, about the machine (January 15, 1941). The article stated, “An electrical computing machine said here to operate more like the human brain than any other such machine known to exist is being built by Dr. John V. Atanasoff, Iowa State College Physics Professor. The machine contains more than 300 vacuum tubes and will be used to compute complicated algebraic equations. Dr. Atanasoff said it will occupy about as much space as a large office desk. The instrument will be entirely electrical and will be used in research experiments.” But there was no record of or paperwork concerning the machine in either the library or the engineering publications office. It was then that Richards visited Sam Legvold, who had returned to the physics department at Iowa State after the war and had worked with Atanasoff on his defense department project in the basement of the physics building, right next to the ABC, and later with him at the NOL.

Legvold remembered the ABC quite well, and not only that, he had a drum from the computer that he had salvaged from the 1948 wreckage. He also remembered talking with Berry about the computer, though not with Atanasoff—with Atanasoff, he had only discussed the defense project they were working on. Legvold was not the only physics professor who remembered the ABC, but no one remembered how it worked (if they had ever known) or the principles behind it. In February 1963, Richards wrote to Atanasoff to inquire about the machine, but Atanasoff was too busy with his retirement projects to give him much help. Once again he was moving house—this time building the house—and once again, perhaps, the paperwork didn’t seem worth finding. Atanasoff always invested himself fully in his project of the minute, and in addition, none of his contacts with IBM or Sperry about the ABC had ever come to anything. He suggested that Richards contact Clifford Berry, who was younger and might remember the ABC in more detail.

In March, Richards wrote to Berry. Berry was now in his early forties, still married to Atanasoff’s former secretary, and gainfully employed in the research and development department at Consolidated Engineering Corporation (later to become a part of Bell and Howell and then DuPont). Consolidated Engineering specialized in developing mass spectrometers. In 1945, Berry had invented his own small computer for the purpose of sorting through the large amount of data produced by the mass spectrometer. Berry had invented many other things—eventually, he owned almost thirty patents in addition to the patent for his small computer. Richards also wrote to the UNIVAC division at Sperry, looking for John Mauchly’s address.

Berry replied ten days later. He remembered the ABC perfectly well. He directed Richards to his master’s thesis in the Iowa State library and also told him about the report for the Iowa State College Research Corporation and the patent applications that had been written but never filed. He added, “An interesting sidelight is that in 1940 or 1941 we had a visit from Dr. John Mauchly who spent a week learning all of the details of our computer and the philosophy of its design. He was the only person outside of the Research Corporation and the patent counsel who was given this opportunity, and he may still have notes of what he learned from us.” Berry then went on to give a concise description of the ABC. He wrote:

I am not sure what Dr. Atanasoff told you about the machine so I will describe it briefly. The machine was designed specifically to solve sets of linear simultaneous algebraic equations up to 30 × 30. All internal operations were carried on in binary arithmetic; the size of the numbers handled was up to 50 binary places (about 15 decimal places). Initial input of data was by means of standard IBM cards, with five 15-place numbers per card; the machine translated the numbers to binary numbers. The machine’s “memory” consisted of two rotating drums filled with small capacitors. The polarity of the charge on a given capacitor represented the binary digit standing in that position. A “clock” frequency of 60 cycles per second was used, the mechanical parts of the machine being driven with a synchronous motor. Storage of intermediate results was by means of a special binary card punch, with which 30 binary numbers, each 50 digits long, could be punched on one card. The mathematical method employed to solve sets of equations was that of systematic elimination of coefficients through linear combinations of pairs of equations.

He included six pictures as well as copies of the news stories about the ABC. For the next few months, Richards and Berry conducted a detailed correspondence about the ABC. Berry, still in the computer business, was amazed to discover that the record of the ABC at Iowa State was so thin, and also that Atanasoff himself had not kept up with what was going on in computers sufficiently to maintain the record of his own contributions. The correspondence supplied Richards with enough detailed information to establish apparent links between the ABC and ENIAC.

Mauchly did not respond to Richards’s first letter and then did not return his calls. But Richards was persistent. When he finally reached Mauchly in the late summer, Mauchly was not happy to hear from him. He derided the ABC, but he did admit to staying in Ames for several days, looking at the computer, and discussing it with Atanasoff. Richards later wrote in his book Electronic Digital Systems, “The Atanasoff Berry computer … does … appear to predate every other electronic digital system by a matter of years.”

In the meantime, Berry decided to take another job, this time in Huntington, New York, on the North Shore of Long Island, at the Vacuum-Electronics Corporation. He left Pasadena in early October and went to Long Island, stopping at a conference for a week on the way. He rented a room, intending to look for a house (he found two), buy a new car, and prepare the way for his family to move east. The company agreed to his request to bring Jean Berry east to New York so that she could choose between the two houses. Berry called Jean every night, and he seemed to her to be excited about both his new job and their new life. But on October 30, before she was due to leave for New York (on November 6), she received a phone call from the Huntington police—Clifford Berry had been found in his rented room, dead, with a plastic bag over his head. The cause of death was listed as “probable suicide.”

Jean Berry discovered when she went east that the police were not sure of what had happened—they maintained a sealed-off crime scene in the room where the death occurred for three weeks. Atanasoff was suspicious enough to drive from Maryland to Long Island and talk to the landlord, who declared that he himself had easily removed the plastic bag from Berry’s face. Jean Berry and Atanasoff eventually became convinced that Berry had not committed suicide, though Scott McCartney raises doubts about Berry’s mental condition in his defense of Eckert and Mauchly, by stating that he had been in two car accidents, which “left him in substantial pain,” and that “he was intoxicated at the time of his death.” In fact, when Jean Berry first told Atanasoff about Clifford Berry’s death, she did not mention suicide at all, but said she thought that it might be related to head injuries suffered in a car accident in 1956 that had resulted in occasional seizures. But Jean Berry later wrote, “When I told a physician what I knew, he said that Cliff could not have possibly killed himself—he was murdered: ‘It’s like trying to hold your breath; you can’t.’ ” She believed to the end of her life that he had indeed been murdered (though there is no public record of who she thought was responsible). Others shared her belief. Kirwan Cox, the Canadian filmmaker who has researched Atanasoff and Berry and done numerous interviews, maintains that whether Berry was or wasn’t murdered, the unarguable result of Berry’s death was its “huge impact on Atanasoff. Prior to Berry’s death, Atanasoff had not wanted to discuss the ABC, because he was too upset about the destruction of the ABC. But Atanasoff believed Berry was murdered, and that he would not have died if Atanasoff had not hired him to work on the machine. [The] death of Berry changed his attitude to the patent lawsuits, and he became quite energetic in pursuing the patent conflict.”

When R. K. Richards’s book Electronic Digital Systems was published three years later, in 1966, some of the first people to read it were patent lawyers at several computer companies. One of these was a man named Allen Kirkpatrick, who had been hired by Control Data Corporation (the home of Seymour Cray, who was later to found Cray Research) to defend CDC against a case of patent infringement brought by Sperry Rand. CDC was being sued along with Honeywell, and they had decided to collaborate on their defense. Richards’s book was sizable and respectable, given his earlier work. It was Richards who coined the term “Atanasoff-Berry Computer,” and in the book’s preface, he stated point-blank, “The ancestry of all electronic digital systems appears to be traceable to a computer which will be called the Atanasoff-Berry Computer.” Since in spite of the lingering patent controversies ENIAC was famous for being the world’s first computer, it proved something of a shock to the computer world when Richards stated, “There was, however, one interesting link between the machine and later work. One of the few people to study the [ABC] in detail was Dr. John Mauchly … According to oral reports from Dr. Atanasoff and Dr. Mauchly, the two met at an American Association for the Advancement of Science Meeting. As a result of conversations at this meeting, Dr. Mauchly made a visit to ISU in 1941 for the specific purpose of studying the computer. As mentioned later, Dr. Mauchly is given credit for subsequently initiating the ENIAC project.”

Control Data Corporation may have had a special desire to break the Eckert-Mauchly patents because they had firsthand knowledge of them. CDC had originally been a company called Engineering Research Associates and had grown out of a World War II U.S. Navy code-breaking operation. Just after the war, ERA continued to build code-breaking machines designed around rotating drums and paper tape readers (there is no evidence that the ERA inventors knew about Colossus), and they did successfully break several Soviet codes, but when in 1949 the Soviets changed the code that had been broken the previous year (shades of what had happened with Enigma in 1942), the machine they had devised stopped being useful. ERA at first decided to go into scientific computers, but then there was a conflict-of-interest scandal on the military procurement side, and the company went broke and was sold to Remington Rand. In the mid-fifties, when Remington Rand was bought by Sperry, the ERA computer group was consolidated into the UNIVAC division. The original ERA group grew restive at UNIVAC and left to form Control Data. They did well—by 1964, the Control Data CDC 6600 supercomputer had successfully challenged the comparable IBM computer, especially in terms of processing speed (three times faster than the IBM). CDC was hard at work on the next version; the stakes were high, and Sperry Rand, IBM, and Control Data knew it.

Honeywell was a much older company, owing its existence to the 1885 invention of a thermostat for coal furnaces. By the 1960s, Honeywell’s technological products had ranged away from heating and plumbing inventions into all sorts of other fields, including the autopilot mechanism for aircraft, which was invented during the war, the ubiquitous round wall-mounted thermostat, and many sorts of gyroscopes. Honeywell got into the computer business by joining with Raytheon to form Datamatic and then buying out Raytheon (Raytheon was the company founded in 1922 by Vannevar Bush, inventor of the Bush Analyzer).

CDC and Honeywell were beginning the suit at a disadvantage—Bell Labs, where George Stibitz had invented his K-for-Kitchen calculator in 1937, had already tried suing Sperry and lost. The judge said that Bell had not produced evidence of “prior public use” of the ideas incorporated into ENIAC. The lawyer assigned to the Honeywell/CDC case knew this because he had worked at the law firm that pursued the Bell Labs case. Before Richards’s revelations, the CDC/Honeywell defense focused on the competing claims of engineers and scientists who had worked with Mauchly and Eckert on ENIAC—plenty of them felt that in their broad patent, Mauchly and Eckert claimed ideas that other people had come up with. Because of this, Honeywell and CDC hoped that Sperry might be willing to negotiate, but they couldn’t count on such an eventuality, and even while proposing a settlement, they began working on a different approach.

Honeywell and CDC had several pieces of luck—one of these was that the general counsel of the patent division at Honeywell was an Iowa State College graduate in electrical engineering, and a classmate of R. K. Richards. Allen Kirkpatrick and his assistant, Kevin Joyce, were also electrical engineering graduates who had gone on to law school. When they read what Richards wrote about the ABC, they understood it, and when they visited Atanasoff, always prickly and impatient with the ignorant, they could talk to him and convince him that they understood what he was saying. Perhaps their greatest piece of luck, though, was that when Atanasoff at last took the time to rummage through all of the old boxes he had been moving over the twenty years since leaving the house on Woodland Street in Ames, he found everything he had kept, and everything they needed.

The most important member of the legal team was a young lawyer named Charles Call, who in 1966 was twenty-eight years old and had already worked on six successful patents for Bell Labs. Call was familiar with vacuum tubes and ham radios. He understood the Richards book, and he was able to understand two other documents that he obtained from Iowa State—Clifford Berry’s master’s thesis and Atanasoff’s thirty-five-page description of the ABC, written in August 1940. By the time he read the Atanasoff documents, he had done considerable work on the case already, and, as Clark Mollenhoff points out, “Studying Atanasoff’s memorandum against the background of his months of study of the ENIAC, EDVAC, and UNIVAC patents, Charles Call became convinced that Atanasoff’s concepts at the time of Mauchly’s visit were far ahead of his time. Also, they went beyond ENIAC and included many of the most important concepts of such second-generation … computers as EDVAC.” As Kirwan Cox notes, in contradiction to Mauchly’s remarks to Atanasoff during his visits to the Naval Ordnance Lab, progress toward the modern computer involved adhering more closely to the ABC model, not moving away from it.

But Call knew that Honeywell and CDC were still at a disadvantage—as good as the documentation looked, it would be difficult to establish to the satisfaction of a judge that Atanasoff’s claim to prior art (something publically known or published about an invention that challenges that invention’s claim to novelty or “nonobviousness”) was more important than leaving things as they were. And Atanasoff himself was now in his mid-sixties—though he looked healthy, with Berry dead, he was the only source for detailed technical information. To safeguard this aspect, Call videotaped Atanasoff’s depositions (a first, according to Tammara Burton) and photographed every page of his documentation. It was only after reading through these copies that Call began to feel confidence in the Honeywell/CDC case.

There were in fact two cases—the Honeywell case concerned the ENIAC patents, which covered more than a hundred ideas (after Mauchly and Eckert lost possession of the EDVAC ideas in 1947, they had decided to claim as much ground as possible). The CDC case covered only one patent, patent 827, concerning what Atanasoff had called “regenerative memory”—this was the same patent IBM had proposed challenging in 1954. The Honeywell case had a rather dramatic beginning—on May 26, 1967, as soon as the Sperry lawyers signaled the company’s unwillingness to settle, a runner from the Minneapolis law firm hurried to the courthouse to file the case. He arrived there fifteen minutes before his counterpart in Washington, D.C., arrived at his local courthouse. This, plus a subsequent finding by Judge John Sirica, in Washington, that the case would take up too much time in the crowded District of Columbia schedule, meant that the case was to be tried in Minneapolis. The less dramatic CDC case was to be tried in Baltimore.

Sperry Rand, in the meantime, wasn’t focusing only on CDC and Honeywell—the company was also suing General Electric for patent infringement. One of the attorneys for General Electric turned out to be George Eltgroth, who had helped Eckert and Mauchly file the original patents and connect with American Totalizer (another of the GE attorneys was an electrical engineer who had helped Berry build the ABC while at Iowa State). Eltgroth had never heard of Atanasoff, Berry, or Mauchly’s trip to Ames in 1941. This meant that if a connection could be proven, and Mauchly had knowingly withheld that information, he would have failed to comply with full-disclosure rules for patents. In this context, Eckert’s October 1953 remarks about the ABC in the Journal of the Institute of Radio Engineers that had originally alerted IBM to a potential patent problem were also significant. Eltgroth heard about Atanasoff in a meeting devoted to GE defense. He exclaimed, “If I had known, I could have protected them!” Why Mauchly had acted as he did, and indeed how his mind worked, subsequently became a matter of considerable interest and deepening mystery.

Another piece of luck for Honeywell and Control Data was that on the very day when Call finished reading over his copies of Atanasoff’s documents, including Mauchly’s enthusiastic letters to Atanasoff after seeing the ABC, he happened to go to a panel on computer science chaired by a man named Isaac Auerbach, who had, in 1960, established the International Federation for Information Processing Societies. Mauchly was to be on the panel and was listed in the program as the “inventor of the first automatic electronic digital computer.” Auerbach, who had worked on ENIAC and had been employed at Sperry UNIVAC, had also read Richards’s book. He asked Mauchly to comment on Richards’s assertions about the Atanasoff-Berry Computer. Mauchly admitted that he had gone to Ames to see the computer and that he had talked to Atanasoff about it. Then he gave Call a foretaste of his future testimony—the computer hadn’t worked, he hadn’t learned anything from Atanasoff, he hadn’t spent much time with the machine. Since Call had Atanasoff’s letters and documents, all of which corroborated an entirely different story, Call knew that such a defense would hurt Sperry’s case, whatever Mauchly’s motives. Whether he remembered what had really happened and was banking on Atanasoff not retaining the documents, or whether he actually had no memory of his response to the ABC, he would be seriously compromised either way.

1. For more information about this connection, see Edwin Black’s IBM and the Holocaust: The Strategic Alliance Between Nazi Germany and America’s Most Powerful Corporation (New York: Crown, 2001).

2. The Whirlwind was another offspring of ENIAC. A man named Perry Crawford was working at MIT, trying to create computerized flight simulators for the navy. They were using analog ideas before Crawford saw ENIAC in 1945. Subsequently, the U.S. Air Force based the SAGE early warning system on the Whirlwind.

3. Eidgenössische Technische Hochschule Zürich.

If you find an error or have any questions, please email us at Thank you!