CHAPTER 9
Bottom up, top down ■ New Guinea highlands ■ Tikopia ■ Tokugawa problems ■ Tokugawa solutions ■ Why Japan succeeded ■ Other successes ■
The preceding chapters have described six past societies whose failure to solve the environmental problems that they created or encountered contributed to their eventual collapse: Easter Island, Pitcairn Island, Henderson Island, the Anasazi, the Classic Lowland Maya, and the Greenland Norse. I dwelt on their failures because they offer us many lessons. However, it’s certainly not the case that all past societies were doomed to environmental disaster: the Icelanders have survived in a difficult environment for over 1,100 years, and many other societies have persisted for thousands of years. Those success stories also hold lessons for us, as well as hope and inspiration. They suggest that there are two contrasting types of approaches to solving environmental problems, which we may term the bottom-up and the top-down approach.
This recognition stems especially from the work of archaeologist Patrick Kirch on Pacific islands of different sizes, with different societal outcomes. The occupation of tiny Tikopia Island (1.8 square miles) was still sustainable after 3,000 years; medium-size Mangaia (27 square miles) underwent a deforestation-triggered collapse, similar to that of Easter Island; and the largest of the three islands, Tonga (288 square miles), has been operating more or less sustainably for 3,200 years. Why did the small island and the large island ultimately succeed in mastering their environmental problems, while the medium-sized island failed? Kirch argues that the small island and the large island adopted opposite approaches to success, and that neither approach was feasible on the medium-sized island.
Small societies occupying a small island or homeland can adopt a bottom-up approach to environmental management. Because the homeland is small, all of its inhabitants are familiar with the entire island, know that they are affected by developments throughout the island, and share a sense of identity and common interests with other inhabitants. Hence everybody realizes that they will benefit from sound environmental measures that they and their neighbors adopt. That’s bottom-up management, in which people work together to solve their own problems.
Most of us have experience of such bottom-up management in our neighborhoods where we live or work. For instance, all homeowners on the Los Angeles street where I live belong to a neighborhood homeowners’ association, whose purpose is to keep the neighborhood safe, harmonious, and attractive for our own benefit. All of us elect the association’s directors each year, discuss policy at an annual meeting, and provide the association’s budget by means of an annual dues payment. With that money, the association maintains flower gardens at road intersections, requires homeowners not to cut down trees without good cause, reviews building plans to ensure that ugly or oversized houses aren’t built, resolves disputes between neighbors, and lobbies city officials on matters affecting the whole neighborhood. As another example, I mentioned in Chapter 1 that landowners living near Hamilton in Montana’s Bitterroot Valley have banded together to operate the Teller Wildlife Refuge, and have thereby contributed to improving their own land values, lifestyle, and fishing and hunting opportunities, even though that in itself does not solve the problems of the United States or of the world.
The opposite approach is the top-down approach suited to a large society with centralized political organization, like Polynesian Tonga. Tonga is much too large for any individual peasant farmer to be familiar with the whole archipelago or even just with any single one of its large islands. Some problem might be going on in a distant part of the archipelago that could ultimately prove fatal to the farmer’s lifestyle, but of which he initially has no knowledge. Even if he did know about it, he might dismiss it with the standard ISEP excuse (“It’s someone else’s problem”), because he might think that it made no difference to him or else its effects would just lie far off in the future. Conversely, a farmer might be inclined to gloss over problems in his own area (e.g., deforestation) because he assumes that there are plenty of trees somewhere else, but in fact he doesn’t know.
Yet Tonga is still large enough for a centralized government under a paramount chief or king to have arisen. That king does have an overview over the whole archipelago, unlike local farmers. Also unlike the farmers, the king may be motivated to attend to the long-term interests of the whole archipelago, because the king derives his wealth from the whole archipelago, he is the latest in a line of rulers that has been there for a long time, and he expects his descendants to rule Tonga forever. Thus, the king or central authority may practice top-down management of environmental resources, and may give all of his subjects orders that are good for them in the long run but that they don’t know enough to have formulated themselves.
This top-down approach is as familiar to citizens of modern First World countries as is the bottom-up approach. We’re accustomed to the fact that governmental entities, especially (in the U.S.) state and federal governments, pursue environmental and other policies affecting the whole state or country, supposedly because the government leaders can have an overview of the state or country beyond the capacity of most individual citizens. For example, while the citizens of Montana’s Bitterroot Valley do have their own Teller Wildlife Refuge, half of the valley’s acreage is owned or managed by the federal government, as national forest or under the Bureau of Land Management.
Traditional middle-sized societies, occupying medium-sized islands or homelands, may not be well suited for either of these two approaches. The island is too large for a local farmer to have an overview of, or stake in, all parts of the island. Hostility between chiefs in neighboring valleys prevents agreement or coordinated action, and even contributes to environmental destruction: each chief leads raids to cut down trees and wreak havoc on rivals’ land. The island may be too small for a central government to have arisen, capable of controlling the entire island. That appears to have been the fate of Mangaia, and may have affected other middle-sized societies in the past. Today, when the whole world is organized into states, fewer middle-sized societies may be facing this dilemma, but it may still arise in countries where state control is weak.
To illustrate these contrasting approaches to success, I shall now relate briefly the story of two small-scale societies where bottom-up approaches worked (the New Guinea highlands and Tikopia Island), and one large-scale society where top-down measures worked (Japan of the Tokugawa era, now the eighth most populous country in the world). In all three cases the environmental problems addressed were deforestation, erosion, and soil fertility. However, many other past societies have adopted similar approaches for solving problems of water resources, fishing, and hunting. It should also be understood that bottom-up and top-down approaches can coexist within a large-scale society that is organized as a pyramidal hierarchy of units. For example, in the United States and other democracies we have bottom-up management by local neighborhood and citizens’ groups coexisting with top-down management by many levels of government (city, county, state, and national).
The first example is the highlands of New Guinea, one of the world’s great success stories of bottom-up management. People have been living self-sustainably in New Guinea for about 46,000 years, until recent times without economically significant inputs from societies outside the highlands, and without inputs of any sort except trade items prized just for status (such as cowry shells and bird-of-paradise plumes). New Guinea is the large island just north of Australia (map, p. 84), lying almost on the equator and hence with hot tropical rainforest in the lowlands, but whose rugged interior consists of alternating ridges and valleys culminating in glacier-covered mountains up to 16,500 feet high. The terrain ruggedness confined European explorers to the coast and lowland rivers for 400 years, during which it became assumed that the interior was forest-covered and uninhabited.
It was therefore a shock, when airplanes chartered by biologists and miners first flew over the interior in the 1930s, for the pilots to see below them a landscape transformed by millions of people previously unknown to the outside world. The scene looked like the most densely populated areas of Holland (Plate 19): broad open valleys with few clumps of trees, divided as far as the eye could see into neatly laid-out gardens separated by ditches for irrigation and drainage, terraced steep hillsides reminiscent of Java or Japan, and villages surrounded by defensive stockades. When more Europeans followed up the pilots’ discoveries overland, they found that the inhabitants were farmers who grew taro, bananas, yams, sugarcane, sweet potatoes, pigs, and chickens. We now know that the first four of those major crops (plus other minor ones) were domesticated in New Guinea itself, that the New Guinea highlands were one of only nine independent centers of plant domestication in the world, and that agriculture has been going on there for about 7,000 years—one of the world’s longest-running experiments in sustainable food production.
To European explorers and colonizers, New Guinea highlanders seemed “primitive.” They lived in thatched huts, were chronically at war with each other, had no kings or even chiefs, lacked writing, and wore little or no clothing even under cold conditions with heavy rain. They lacked metal and made their tools instead of stone, wood, and bone. For instance, they felled trees with stone axes, dug gardens and ditches with wooden sticks, and fought each other with wooden spears and arrows and bamboo knives.
That “primitive” appearance proved deceptive, because their farming methods are sophisticated, so much so that European agronomists still don’t understand today in some cases the reasons why New Guineans’ methods work and why well-intentioned European farming innovations failed there. For instance, one European agricultural advisor was horrified to notice that a New Guinean sweet potato garden on a steep slope in a wet area had vertical drainage ditches running straight down the slope. He convinced the villagers to correct their awful mistake, and instead to put in drains running horizontally along contours, according to good European practices. Awed by him, the villagers reoriented their drains, with the result that water built up behind the drains, and in the next heavy rains a landslide carried the entire garden down the slope into the river below. To avoid exactly that outcome, New Guinea farmers long before the arrival of Europeans learned the virtues of vertical drains under highland rain and soil conditions.
That’s only one of the techniques that New Guineans worked out by trial and error, over the course of thousands of years, for growing crops in areas receiving up to 400 inches of rain per year, with frequent earthquakes, landslides, and (at higher elevations) frost. To maintain soil fertility, especially in areas of high population density where short fallow periods or even continuous growing of crops were essential to produce enough food, they resorted to a whole suite of techniques besides the silviculture that I’ll explain in a moment. They added weeds, grass, old vines, and other organic matter to the soil as compost at up to 16 tons per acre. They applied garbage, ash from fires, vegetation cut from fields resting in fallow, rotten logs, and chicken manure as mulches and fertilizers to the soil surface. They dug ditches around fields to lower the watertable and prevent waterlogging, and transferred the organic muck dug out of those ditches onto the soil surface. Legume food crops that fix atmospheric nitrogen, such as beans, were rotated with other crops—in effect, an independent New Guinean invention of a crop rotation principle now widespread in First World agriculture for maintaining soil nitrogen levels. On steep slopes New Guineans constructed terraces, erected soil retention barriers, and of course removed excess water by the vertical drains that aroused the agronomist’s ire. A consequence of their relying on all these specialized methods is that it takes years of growing up in a village to learn how to farm successfully in the New Guinea highlands. My highland friends who spent their childhood years away from their village to pursue an education found, on returning to the village, that they were incompetent at farming their family gardens because they had missed out on mastering a large body of complex knowledge.
Sustainable agriculture in the New Guinea highlands poses difficult problems not only of soil fertility but also of wood supplies, as a result of forests having to be cleared for gardens and villages. The traditional highland lifestyle relied on trees for many purposes, such as for timber to build houses and fences, wood for making tools and utensils and weapons, and fuel for cooking and for heating the hut during the cold nights. Originally, the highlands were covered with oak and beech forests, but thousands of years of gardening have left the most densely populated areas (especially the Wahgi Valley of Papua New Guinea and the Baliem Valley of Indonesian New Guinea) completely deforested up to an elevation of 8,000 feet. Where do highlanders obtain all the wood that they need?
Already on the first day of my visit to the highlands in 1964, I saw groves of a species of casuarina tree in villages and gardens. Also known as she-oaks or ironwood, casuarinas are a group of several dozen tree species with leaves resembling pine needles, native to Pacific islands, Australia, Southeast Asia, and tropical East Africa, but now widely introduced elsewhere because of their easily split but very hard wood (hence that name “ironwood”). A species native to the New Guinea highlands, Casuarina oligodon, is the one that several million highlanders grow on a massive scale by transplanting seedlings that have sprouted naturally along stream banks. Highlanders similarly plant several other tree species, but casuarina is the most prevalent. So extensive is the scale of transplanting casuarinas in the highlands that the practice is now referred to as “silviculture,” the growing of trees instead of field crops as in conventional agriculture (silva, ager, and cultura are the Latin words for woodland, field, and cultivation, respectively).
Only gradually have European foresters come to appreciate the particular advantages of Casuarina oligodon, and the benefits that highlanders obtain from its groves. The species is fast-growing. Its wood is excellent for timber and fuel. Its root nodules that fix nitrogen, and its copious leaf-fall, add both nitrogen and carbon to the soil. Hence casuarinas grown interspersed in active gardens increase the soil’s fertility, while casuarinas grown in abandoned gardens shorten the length of time that the site must be left fallow to recover its fertility before a new crop can be planted. The roots hold soil on steep slopes and thereby reduce erosion. New Guinea farmers claim that the trees somehow reduce garden infestation with a taro beetle, and experience suggests that they are right about that claim as they are about many others, though agronomists still haven’t figured out the basis of the tree’s claimed anti-beetle potency. Highlanders also say that they appreciate their casuarina groves for esthetic reasons, because they like the sound of the wind blowing through the branches, and because the trees provide shade to the village. Thus, even in broad valleys from which the original forest has been completely cleared, casuarina silviculture permits a wood-dependent society to continue to thrive.
How long have New Guinea highlanders been practicing silviculture? The clues used by paleobotanists to reconstruct the vegetational history of the highlands have been basically similar to those I already discussed for Easter Island, the Maya area, Iceland, and Greenland in Chapters 2-8: analysis of swamp and lake cores for pollen identified down to the level of the plant species producing the pollen; presence of charcoal or carbonized particles resulting from fires (either natural or else lit by humans to clear forests); sediment accumulation suggesting erosion following forest clearance; and radiocarbon dating.
It turns out that New Guinea and Australia were first settled around 46,000 years ago by humans moving eastwards from Asia through Indonesia’s islands on rafts or canoes. At that time, New Guinea was still joined in a single landmass to Australia, where early human arrival is well attested at numerous sites. By 32,000 years ago, the appearance of charcoal from frequent fires, and an increase in pollen of non-forest tree species compared to forest tree species, at New Guinea highland sites hint that people were already visiting the sites, presumably to hunt and to gather forest pandanus nuts as they still do today. Signs of sustained forest clearance and the appearance of artificial drains within valley swamps by around 7,000 years ago suggest the origins of highland agriculture then. Forest pollen continues to decrease at the expense of non-forest pollen until around 1,200 years ago, when the first big surge in quantities of casuarina pollen appears almost simultaneously in two valleys 500 miles apart, the Baliem Valley in the west and the Wahgi Valley in the east. Today those are the broadest, most extensively deforested highland valleys, supporting the largest and densest human populations, and those same features were probably true of those two valleys 1,200 years ago.
If we take that casuarina pollen surge as a sign of the beginning of casuarina silviculture, why should it have arisen then, apparently independently in two separate areas of the highlands? Two or three factors were working together at that time to produce a wood crisis. One was the advance of deforestation, as the highland’s farming population increased from 7,000 years ago onwards. A second factor is associated with a thick layer of volcanic ashfall, termed the Ogowila tephra, which at just that time blanketed eastern New Guinea (including the Wahgi Valley) but wasn’t blown as far west as the Baliem Valley. That Ogowila tephra originated from an enormous eruption on Long Island off the coast of eastern New Guinea. When I visited Long Island in 1972, the island consisted of a ring of mountains 16 miles in diameter surrounding a huge hole filled by a crater lake, one of the largest lakes on any Pacific island. As discussed in Chapter 2, the nutrients carried in such an ashfall would have stimulated crop growth and thereby stimulated human population growth, in turn creating increased need for wood for timber and fuel, and increased rewards for discovering the virtues of casuarina silviculture. Finally, if one can extrapolate to New Guinea from the time record of El Niño events demonstrated for Peru, droughts and frost might have stressed highland societies then as a third factor.
To judge by an even bigger surge in casuarina pollen between 300 and 600 years ago, highlanders may then have expanded silviculture further under the stimulus of two other events: the Tibito tephra, an even bigger volcanic ashfall and boost to soil fertility and human population than the Ogowila tephra, also originating from Long Island and directly responsible for the hole filled by the modern lake that I saw; and possibly the arrival then of the Andean sweet potato in the New Guinea highlands, permitting crop yields several times those previously available with just New Guinean crops. After its initial appearance in the Wahgi and Baliem Valleys, casuarina silviculture (as attested by pollen cores) reached other highland areas at various later times, and was adopted in some outlying areas only within the 20th century. That spread of silviculture probably involved diffusion of knowledge of the technique from its first two sites of invention, plus perhaps some later independent inventions in other areas.
I have presented New Guinea highland casuarina silviculture as an example of bottom-up problem-solving, even though there are no written records from the highlands to tell us exactly how the technique was adopted. But it could hardly have been by any other type of problem-solving, because New Guinea highland societies represent an ultra-democratic extreme of bottom-up decision-making. Until the arrival of Dutch and Australian colonial government in the 1930s, there had not been even any beginnings of political unification in any part of the highlands: merely individual villages alternating between fighting each other and joining in temporary alliances with each other against other nearby villages. Within each village, instead of hereditary leaders or chiefs, there were just individuals, called “big-men,” who by force of personality were more influential than other individuals but still lived in a hut like everybody else’s and tilled a garden like anybody else’s. Decisions were (and often still are today) reached by means of everybody in the village sitting down together and talking, and talking, and talking. The big-men couldn’t give orders, and they might or might not succeed in persuading others to adopt their proposals. To outsiders today (including not just me but often New Guinea government officials themselves), that bottom-up approach to decision-making can be frustrating, because you can’t go to some designated village leader and get a quick answer to your request; you have to have the patience to endure talk-talk-talk for hours or days with every villager who has some opinion to offer.
That must have been the context in which casuarina silviculture and all those other useful agricultural practices were adopted in the New Guinea highlands. People in any village could see the deforestation going on around them, could recognize the lower growth rates of their crops as gardens lost fertility after being initially cleared, and experienced the consequences of timber and fuel scarcity. New Guineans are more curious and experimental than any other people that I have encountered. When in my early years in New Guinea I saw someone who had acquired a pencil, which was still an unfamiliar object then, the pencil would be tried out for myriad purposes other than writing: a hair decoration? a stabbing tool? something to chew on? a long earring? a plug through the pierced nasal septum? Whenever I take New Guineans to work with me in areas away from their own village, they are constantly picking up local plants, asking local people about the plants’ uses, and selecting some of the plants to bring back with them and try growing at home. In that way, someone 1,200 years ago would have noticed the casuarina seedlings growing beside a stream, brought them home as yet another plant to try out, noticed the beneficial effects in a garden—and then some other people would have observed those garden casuarinas and tried the seedlings for themselves.
Besides thereby solving their problems of wood supply and soil fertility, New Guinea highlanders also faced a population problem as their numbers increased. That population increase became checked by practices that continued into the childhoods of many of my New Guinea friends—especially by war, infanticide, use of forest plants for contraception and abortion, and sexual abstinence and natural lactational amenorrhea for several years while a baby was being nursed. New Guinea societies thereby avoided the fates that Easter Island, Mangareva, the Maya, the Anasazi, and many other societies suffered through deforestation and population growth. Highlanders managed to operate sustainably for tens of thousands of years before the origins of agriculture, and then for another 7,000 years after the origins of agriculture, despite climate changes and human environmental impacts constantly creating altered conditions.
Today, New Guineans are facing a new population explosion because of the success of public health measures, introduction of new crops, and the end or decrease of intertribal warfare. Population control by infanticide is no longer socially acceptable as a solution. But New Guineans already adapted in the past to such big changes as the extinction of the Pleistocene megafauna, glacial melting and warming temperatures at the end of the Ice Ages, the development of agriculture, massive deforestation, volcanic tephra fallouts, El Niño events, the arrival of the sweet potato, and the arrival of Europeans. Will they now also be able to adapt to the changed conditions producing their current population explosion?
Tikopia, a tiny, isolated, tropical island in the Southwest Pacific Ocean, is another success story of bottom-up management (map, p. 84). With a total area of just 1.8 square miles, it supports 1,200 people, which works out to a population density of 800 people per square mile of farmable land. That’s a dense population for a traditional society without modern agricultural techniques. Nevertheless, the island has been occupied continuously for almost 3,000 years.
The nearest land of any sort to Tikopia is the even-tinier (one-seventh of a square mile) island of Anuta 85 miles distant, inhabited by only 170 people. The nearest larger islands, Vanua Lava and Vanikoro in the Vanuatu and Solomon Archipelagoes respectively, are 140 miles distant and still only 100 square miles each in area. In the words of the anthropologist Raymond Firth, who lived on Tikopia for a year in 1928-29 and returned for subsequent visits, “It’s hard for anyone who has not actually lived on the island to realize its isolation from the rest of the world. It is so small that one is rarely out of sight or sound of the sea. [The maximum distance from the center of the island to the coast is three-quarters of a mile.] The native concept of space bears a distinct relation to this. They find it almost impossible to conceive of any really large land mass . . . I was once asked seriously by a group of them, ‘Friend, is there any land where the sound of the sea is not heard?’ Their confinement has another less obvious result. For all kinds of spatial reference they use the expressions inland and to seawards. Thus an axe lying on the floor of a house is localized in this way, and I have even heard a man direct the attention of another in saying: ‘There is a spot of mud on your seaward cheek.’ Day by day, month after month, nothing breaks the level line of a clear horizon, and there is no faint haze to tell of the existence of any other land.”
In Tikopia’s traditional small canoes, the open-ocean voyage over the cyclone-prone Southwest Pacific to any of those nearest-neighbor islands was dangerous, although Tikopians considered it a great adventure. The canoes’ small sizes and the infrequency of the voyages severely limited the quantity of goods that could be imported, so that in practice the only economically significant imports were stone for making tools, and unmarried young people from Anuta as marriage partners. Because Tikopia rock is of poor quality for making tools (just as we saw for Mangareva and Henderson Islands in Chapter 3), obsidian, volcanic glass, basalt, and chert were imported from Vanua Lava and Vanikoro, with some of that imported stone in turn originating from much more distant islands in the Bismarck, Solomon, and Samoan Archipelagoes. Other imports consisted of luxury goods: shells for ornaments, bows and arrows, and (formerly) pottery.
There could be no question of importing staple foods in amounts sufficient to contribute meaningfully to Tikopian subsistence. In particular, Tikopians had to produce and store enough surplus food to be able to avoid starvation during the annual dry season of May and June, and after cyclones that at unpredictable intervals destroy gardens. (Tikopia lies in the Pacific’s main cyclone belt, with on the average 20 cyclones per decade.) Hence surviving on Tikopia required solving two problems for 3,000 years: How could a food supply sufficient for 1,200 people be produced reliably? And how could the population be prevented from increasing to a higher level that would be impossible to sustain?
Our main source of information about the traditional Tikopian lifestyle comes from Firth’s observations, one of the classic studies of anthropology. While Tikopia had been “discovered” by Europeans already in 1606, its isolation ensured that European influence remained negligible until the 1800s, the first visit by missionaries did not take place until 1857, and the first conversions of islanders to Christianity did not begin until after 1900. Hence Firth in 1928-29 had a better opportunity than subsequent visiting anthropologists to observe a culture that still contained many of its traditional elements, although already then in the process of change.
Sustainability of food production on Tikopia is promoted by some of the environmental factors discussed in Chapter 2 as tending to make societies on some Pacific islands more sustainable, and less susceptible to environmental degradation, than societies on other islands. Working in favor of sustainability on Tikopia are its high rainfall, moderate latitude, and location in the zone of high volcanic ash fallout (from volcanoes on other islands) and high fallout of Asian dust. Those factors constitute a geographical stroke of good luck for the Tikopians: favorable conditions for which they personally could claim no credit. The remainder of their good fortune must be credited to what they have done for themselves. Virtually the whole island is micromanaged for continuous and sustainable food production, instead of the slash-and-burn agriculture prevalent on many other Pacific islands. Almost every plant species on Tikopia is used by people in one way or another: even grass is used as a mulch in gardens, and wild trees are used as food sources in times of famine.
As you approach Tikopia from the sea, the island appears to be covered with tall, multi-storied, original rainforest, like that mantling uninhabited Pacific islands. Only when you land and go among the trees do you realize that true rainforest is confined to a few patches on the steepest cliffs, and that the rest of the island is devoted to food production. Most of the island’s area is covered with an orchard whose tallest trees are native or introduced tree species producing edible nuts or fruit or other useful products, of which the most important are coconuts, breadfruit, and sago palms yielding a starchy pith. Less numerous but still valuable canopy trees are the native almond (Canarium harveyi), the nut-bearing Burckella ovovata, the Tahitian chestnut Inocarpus fagiferus, the cut-nutBarringtonia procera, and the tropical almond Terminalia catappa. Smaller useful trees in the middle story include the betelnut palm with narcotic-containing nuts, the vi-apple Spondias dulcis, and the medium-sized mami tree Antiaris toxicara, which fits well into this orchard and whose bark was used for cloth, instead of the paper mulberry used on other Polynesian islands. The understory below these tree layers is in effect a garden for growing yams, bananas, and the giant swamp taro Cyrtosperma chamissonis,most of whose varieties require swampy conditions but of which Tikopians grow a genetic clone specifically adapted to dry conditions in their well-drained hillside orchards. This whole multi-story orchard is unique in the Pacific in its structural mimicry of a rainforest, except that its plants are all edible whereas most rainforest trees are inedible.
In addition to these extensive orchards, there are two other types of small areas that are open and treeless but also used for food production. One is a small freshwater swamp, devoted to growing the usual moisture-adapted form of giant swamp taro instead of the distinctive dry-adapted clone grown on hillsides. The other consists of fields devoted to short-fallow, labor-intensive, nearly continuous production of three root crops: taro, yams, and now the South American-introduced crop manioc, which has largely replaced native yams. These fields require almost constant labor input for weeding, plus mulching with grass and brushwood to prevent crop plants from drying out.
The main food products of these orchards, swamps, and fields are starchy plant foods. For their protein, in the absence of domestic animals larger than chickens and dogs, traditional Tikopians relied to a minor extent on ducks and fish obtained from the island’s one brackish lake, and to a major extent on fish and shellfish from the sea. Sustainable exploitation of seafood resulted from taboos administered by chiefs, whose permission was required to catch or eat fish; the taboos therefore had the effect of preventing overfishing.
Tikopians still had to fall back on two types of emergency food supply to get them over the annual dry season when crop production was low, and the occasional cyclone that could destroy gardens and orchard crops. One type consisted of fermenting surplus breadfruit in pits to produce a starchy paste that can be stored for two or three years. The other type consisted of exploiting the small remaining stands of original rainforest to harvest fruits, nuts, and other edible plant parts that were not preferred foods but could save people from otherwise starving. In 1976, while I was visiting another Polynesian island called Rennell, I asked Rennell Islanders about the edibility of fruit from each of the dozens of Rennell species of forest trees. There proved to be three answers: some trees were said to have “edible” fruit; some trees were said to have “inedible” fruit; and other trees had fruit “eaten only at the time of the hungi kenge.” Never having heard of a hungi kenge, I inquired about it. I was told that it was the biggest cyclone in living memory, which had destroyed Rennell’s gardens around 1910 and reduced people to the point of starvation, from which they saved themselves by eating forest fruits that they didn’t especially like and normally wouldn’t eat. On Tikopia, with its two cyclones in the average year, such fruits must be even more important than on Rennell.
Those are the ways in which Tikopians assure themselves of a sustainable food supply. The other prerequisite for sustainable occupation of Tikopia is a stable, non-increasing population. During Firth’s visit in 1928-29 he counted the island’s population to be 1,278 people. From 1929 to 1952 the population increased at 1.4% per year, which is a modest rate of increase that would surely have been exceeded during the generations following the first settlement of Tikopia around 3,000 years ago. Even supposing, however, that Tikopia’s initial population growth rate was also only 1.4% per year, and that the initial settlement had been by a canoe holding 25 people, then the population of the 1.8-square-mile island would have built up to the absurd total of 25 million people after a thousand years, or to 25 million trillion people by 1929. Obviously that’s impossible: the population could not have continued to grow at that rate, because it would already have reached its modern level of 1,278 people within only 283 years after human arrival. How was Tikopia’s population held constant after 283 years?
Firth learned of six methods of population regulation still operating on the island in 1929, and a seventh that had operated in the past. Most readers of this book will also have practiced one or more of those methods, such as contraception or abortion, and our decisions to do so may have been implicitly influenced by considerations of human population pressure or family resources. On Tikopia, however, people are explicit in saying that their motive for contraception and other regulatory behaviors is to prevent the island from becoming overpopulated, and to prevent the family from having more children than the family’s land could support. For instance, Tikopia chiefs each year carry out a ritual in which they preach an ideal of Zero Population Growth for the island, unaware that an organization founded with that name (but subsequently renamed) and devoted to that goal has also arisen in the First World. Tikopia parents feel that it is wrong for them to continue to give birth to children of their own once their eldest son has reached marriageable age, or to have more children than a number variously given as four children, or one boy and a girl, or one boy and one or two girls.
Of traditional Tikopia’s seven methods of population regulation, the simplest was contraception by coitus interruptus. Another method was abortion, induced by pressing on the belly, or placing hot stones on the belly, of a pregnant woman near term. Alternatively, infanticide was carried out by burying alive, smothering, or turning a newborn infant on its face. Younger sons of families poor in land remained celibate, and many among the resulting surplus of marriageable women also remained celibate rather than enter into polygamous marriages. (Celibacy on Tikopia means not having children, and does not preclude having sex by coitus interruptus and then resorting to abortion or infanticide if necessary.) Still another method was suicide, of which there were seven known cases by hanging (six men and one woman) and 12 (all of them women) by swimming out to sea between 1929 and 1952. Much commoner than such explicit suicide was “virtual suicide” by setting out on dangerous overseas voyages, which claimed the lives of 81 men and three women between 1929 and 1952. Such sea voyaging accounted for more than one-third of all deaths of young bachelors. Whether sea voyaging constituted virtual suicide or just reckless behavior on the part of young men undoubtedly varied from case to case, but the bleak prospects of younger sons in poor families on a crowded island during a famine were probably often a consideration. For instance, Firth learned in 1929 that a Tikopian man named Pa Nukumara, the younger brother of a chief still alive then, had gone to sea with two of his own sons during a severe drought and famine, with the express intent of dying quickly, instead of slowly starving to death on shore.
The seventh method of population regulation was not operating during Firth’s visits but was reported to him by oral traditions. Sometime in the 1600s or early 1700s, to judge by accounts of the number of elapsed generations since the events, Tikopia’s former large saltwater bay became converted into the current brackish lake by the closing-off of a sandbar across its mouth. That resulted in the death of the bay’s former rich shellfish beds and a drastic decrease in its fish populations, hence in starvation for the Nga Ariki clan living on that part of Tikopia at that time. The clan reacted to acquire more land and coastline for itself by attacking and exterminating the Nga Ravenga clan. A generation or two later, the Nga Ariki also attacked the remaining Nga Faea clan, who fled the island in canoes (thereby committing virtual suicide) rather than await their deaths by murder on land. These oral memories are confirmed by archaeological evidence of the bay’s closing and of the village sites.
Most of these seven methods for keeping Tikopia’s population constant have disappeared or declined under European influence during the 20th century. The British colonial government of the Solomons forbade sea voyaging and warfare, while Christian missions preached against abortion, infanticide, and suicide. As a result, Tikopia’s population grew from its 1929 level of 1,278 people to 1,753 people by 1952, when two destructive cyclones within the span of 13 months destroyed half of Tikopia’s crops and caused widespread famine. The British Solomon Islands’ colonial government responded to the immediate crisis by sending food, and then dealt with the long-term problem by permitting or encouraging Tikopians to relieve their overpopulation by resettling onto less populated Solomon islands. Today, Tikopia’s chiefs limit the number of Tikopians who are permitted to reside on their island to 1,115 people, close to the population size that was traditionally maintained by infanticide, suicide, and other now-unacceptable means.
How and when did Tikopia’s remarkable sustainable economy arise? Archaeological excavations by Patrick Kirch and Douglas Yen show that it was not invented all at once but developed over the course of nearly 3,000 years. The island was first settled around 900 B.C. by Lapita people ancestral to the modern Polynesians, as described in Chapter 2. Those first settlers made a heavy impact on the island’s environment. Remains of charcoal at archaeological sites show that they cleared forest by burning it. They feasted on breeding colonies of seabirds, land birds, and fruit bats, and on fish, shellfish, and sea turtles. Within a thousand years, the Tikopian populations of five bird species (Abbott’s Booby, Audubon’s Shearwater, Banded Rail, Common Megapode, and Sooty Tern) were extirpated, to be followed later by the Red-footed Booby. Also in that first millennium, archaeological middens reveal the virtual elimination of fruit bats, a three-fold decrease in fish and bird bones, a 10-fold decrease in shellfish, and a decrease in the maximum size of giant clams and turban shells (presumably because people were preferentially harvesting the largest individuals).
Around 100 B.C., the economy began to change as those initial food sources disappeared or were depleted. Over the course of the next thousand years, charcoal accumulation ceased, and remains of native almonds (Canarium harveyi) appeared, in archaeological sites, indicating that Tikopians were abandoning slash-and-burn agriculture in favor of maintaining orchards with nut trees. To compensate for the drastic declines in birds and seafood, people shifted to intensive husbandry of pigs, which came to account for nearly half of all protein consumed. An abrupt change in economy and artifacts around A.D. 1200 marks the arrival of Polynesians from the east, whose distinctive cultural features had been forming in the area of Fiji, Samoa, and Tonga among descendants of the Lapita migration that had initially also colonized Tikopia. It was those Polynesians who brought with them the technique of fermenting and storing breadfruit in pits.
A momentous decision taken consciously around A.D. 1600, and recorded in oral traditions but also attested archaeologically, was the killing of every pig on the island, to be replaced as protein sources by an increase in consumption of fish, shellfish, and turtles. According to Tikopians’ accounts, their ancestors had made that decision because pigs raided and rooted up gardens, competed with humans for food, were an inefficient means to feed humans (it takes about 10 pounds of vegetables edible to humans to produce just one pound of pork), and had become a luxury food for the chiefs. With that elimination of pigs, and the transformation of Tikopia’s bay into a brackish lake around the same time, Tikopia’s economy achieved essentially the form in which it existed when Europeans first began to take up residence in the 1800s. Thus, until colonial government and Christian mission influence became important in the 20th century, Tikopians had been virtually self-supporting on their micromanaged remote little speck of land for three millennia.
Tikopians today are divided among four clans each headed by a hereditary chief, who holds more power than does a non-hereditary big-man of the New Guinea highlands. Nevertheless, the evolution of Tikopian subsistence is better described by the bottom-up metaphor than by the top-down metaphor. One can walk all the way around the coastline of Tikopia in under half a day, so that every Tikopian is familiar with the entire island. The population is small enough that every Tikopian resident on the island can also know all other residents individually. While every piece of land has a name and is owned by some patrilineal kinship group, each house owns pieces of land in different parts of the island. If a garden is not being used at the moment, anyone can temporarily plant crops in that garden without asking the owner’s permission. Anyone can fish on any reef, regardless of whether it happens to be in front of someone else’s house. When a cyclone or drought arrives, it affects the entire island. Thus, despite differences among Tikopians in their clan affiliation and in how much land their kinship group owns, they all face the same problems and are at the mercy of the same dangers. Tikopia’s isolation and small size have demanded collective decision-making ever since the island was settled. Anthropologist Raymond Firth entitled his first book We, the Tikopia because he often heard that phrase (“Matou nga Tikopia”) from Tikopians explaining their society to him.
Tikopia’s chiefs do serve as the overlords of clan lands and canoes, and they redistribute resources. By Polynesian standards, however, Tikopia is among the least stratified chiefdoms with the weakest chiefs. Chiefs and their families produce their own food and dig in their own gardens and orchards, as do commoners. In Firth’s words, “Ultimately the mode of production is inherent in the social tradition, of which the chief is merely the prime agent and interpreter. He and his people share the same values: an ideology of kinship, ritual, and morality reinforced by legend and mythology. The chief is to a considerable extent a custodian of this tradition, but he is not alone in this. His elders, his fellow chiefs, the people of his clan, and even the members of his family are all imbued with the same values, and advise and criticize his actions.” Thus, that role of Tikopian chiefs represents much less top-down management than does the role of the leaders of the remaining society that we shall now discuss.
Our other success story resembles Tikopia in that it too involves a densely populated island society isolated from the outside world, with few economically significant imports, and with a long history of a self-sufficient and sustainable lifestyle. But the resemblance ends there, because this island has a population 100,000 times larger than Tikopia’s, a powerful central government, an industrial First World economy, a highly stratified society presided over by a rich powerful elite, and a big role of top-down initiatives in solving environmental problems. Our case study is of Japan before 1868.
Japan’s long history of scientific forest management is not well known to Europeans and Americans. Instead, professional foresters think of the techniques of forest management widespread today as having begun to develop in German principalities in the 1500s, and having spread from there to much of the rest of Europe in the 1700s and 1800s. As a result, Europe’s total area of forest, after declining steadily ever since the origins of European agriculture 9,000 years ago, has actually been increasing since around 1800. When I first visited Germany in 1959, I was astonished to discover the extent of neatly laid-out forest plantations covering much of the country, because I had thought of Germany as industrialized, populous, and urban.
But it turns out that Japan, independently of and simultaneously with Germany, also developed top-down forest management. That too is surprising, because Japan, like Germany, is industrialized, populous, and urban. It has the highest population density of any large First World country, with nearly 1,000 people per square mile of total area, or 5,000 people per square mile of farmland. Despite that high population, almost 80% of Japan’s area consists of sparsely populated forested mountains (Plate 20), while most people and agriculture are crammed into the plains that make up only one-fifth of the country. Those forests are so well protected and managed that their extent is still increasing, even though they are being utilized as valuable sources of timber. Because of that forest mantle, the Japanese often refer to their island nation as “the green archipelago.” While the mantle superficially resembles a primeval forest, in fact most of Japan’s accessible original forests were cut by 300 years ago and became replaced with regrowth forest and plantations as tightly micromanaged as those of Germany and Tikopia.
Japanese forest policies arose as a response to an environmental and population crisis paradoxically brought on by peace and prosperity. For almost 150 years beginning in 1467, Japan was convulsed by civil wars as the ruling coalition of powerful houses that had emerged from the earlier disintegration of the emperor’s power in turn collapsed, and as control passed instead to dozens of autonomous warrior barons (called daimyo), who fought each other. The wars were finally ended by the military victories of a warrior named Toyotomi Hideyoshi and his successor Tokugawa Ieyasu. In 1615 Ieyasu’s storming of the Toyotomi family stronghold at Osaka, and the deaths by suicide of the remaining Toyotomis, marked the wars’ end.
Already in 1603, the emperor had invested Ieyasu with the hereditary title of shogun, the chief of the warrior estate. From then on, the shogun based at his capital city of Edo (modern Tokyo) exercised the real power, while the emperor at the old capital of Kyoto remained a figurehead. A quarter of Japan’s area was directly administered by the shogun, the remaining three-quarters being administered by the 250 daimyo whom the shogun ruled with a firm hand. Military force became the shogun’s monopoly. Daimyo could no longer fight each other, and they even needed the shogun’s permission to marry, to modify their castles, or to pass on their property in inheritance to a son. The years from 1603 to 1867 in Japan are called the Tokugawa era, during which a series of Tokugawa shoguns kept Japan free of war and foreign influence.
Peace and prosperity allowed Japan’s population and economy to explode. Within a century of the wars’ end, population doubled because of a fortunate combination of factors: peaceful conditions, relative freedom from the disease epidemics afflicting Europe at the time (due to Japan’s ban on foreign travel or visitors: see below), and increased agricultural productivity as the result of the arrival of two productive new crops (potatoes and sweet potatoes), marsh reclamation, improved flood control, and increased production of irrigated rice. While the population as a whole thus grew, cities grew even faster, to the point where Edo became the world’s most populous city by 1720. Throughout Japan, peace and a strong centralized government brought a uniform currency and uniform system of weights and measures, the end of toll and customs barriers, road construction, and improved coastal shipping, all of which contributed to a trade boom within Japan.
But Japan’s trade with the rest of the world was cut to almost nothing. Portuguese navigators bent on trade and conquest, having rounded Africa to reach India in 1498, advanced to the Moluccas in 1512, China in 1514, and Japan in 1543. Those first European visitors to Japan were just a pair of shipwrecked sailors, but they caused unsettling changes by introducing guns, and even bigger changes when they were followed by Catholic missionaries six years later. Hundreds of thousands of Japanese, including some daimyo, became converted to Christianity. Unfortunately, rival Jesuit and Franciscan missionaries began competing with each other, and stories spread that friars were trying to Christianize Japan as a prelude to a European takeover.
In 1597 Toyotomi Hideyoshi crucified Japan’s first group of 26 Christian martyrs. When Christian daimyo then tried to bribe or assassinate government officials, the shogun Tokugawa Ieyasu concluded that Europeans and Christianity posed a threat to the stability of the shogunate and Japan. (In retrospect, when one considers how European military intervention followed the arrival of apparently innocent traders and missionaries in China, India, and many other countries, the threat foreseen by Ieyasu was real.) In 1614 Ieyasu prohibited Christianity and began to torture and execute missionaries and those of their converts who refused to disavow their religion. In 1635 a later shogun went even further by forbidding Japanese to travel overseas and forbidding Japanese ships to leave Japan’s coastal waters. Four years later, he expelled all the remaining Portuguese from Japan.
Japan thereupon entered a period, lasting over two centuries, in which it cordoned itself off from the rest of the world, for reasons reflecting even more its agendas related to China and Korea than to Europe. The sole foreign traders admitted were a few Dutch merchants (considered less dangerous than Portuguese because they were anti-Catholic), kept isolated like dangerous germs on an island in Nagasaki harbor, and a similar Chinese enclave. The only other foreign trade permitted was with Koreans on Tsushima Island lying between Korea and Japan, with the Ryukyu Islands (including Okinawa) to the south, and with the aboriginal Ainu population on Hokkaido Island to the north (then not yet part of Japan, as it is today). Apart from those contacts, Japan did not even maintain overseas diplomatic relations, not even with China. Nor did Japan attempt foreign conquests after Hideyoshi’s two unsuccessful invasions of Korea in the 1590s.
During those centuries of relative isolation, Japan was able to meet most of its needs domestically, and in particular was virtually self-sufficient in food, timber, and most metals. Imports were largely restricted to sugar and spices, ginseng and medicines and mercury, 160 tons per year of luxury woods, Chinese silk, deer skin and other hides to make leather (because Japan maintained few cattle), and lead and saltpeter to make gunpowder. Even the amounts of some of those imports decreased with time as domestic silk and sugar production rose, and as guns became restricted and then virtually abolished. This remarkable state of self-sufficiency and self-imposed isolation lasted until an American fleet under Commodore Perry arrived in 1853 to demand that Japan open its ports to supply fuel and provisions to American whaling and merchant ships. When it then became clear that the Tokugawa shogunate could no longer protect Japan from barbarians armed with guns, the shogunate collapsed in 1868, and Japan began its remarkably rapid transformation from an isolated semi-feudal society to a modern state.
Deforestation was a major factor in the environmental and population crisis brought on by the peace and prosperity of the 1600s, as Japan’s timber consumption (almost entirely consisting of domestic timber) soared. Until the late 19th century, most Japanese buildings were made of wood, rather than of stone, brick, cement, mud, or tiles as in many other countries. That tradition of timber construction stemmed partly from a Japanese esthetic preference for wood, and partly from the ready availability of trees throughout Japan’s early history. With the onset of peace, prosperity, and a population boom, timber use for construction took off to supply the needs of the growing rural and urban population. Beginning around 1570, Hideyoshi, his successor the shogun Ieyasu, and many of the daimyo led the way, indulging their egos and seeking to impress each other by constructing huge castles and temples. Just the three biggest castles built by Ieyasu required clear-cutting about 10 square miles of forests. About 200 castle towns and cities arose under Hideyoshi, Ieyasu, and the next shogun. After Ieyasu’s death, urban construction outstripped elite monument construction in its demand for timber, especially because cities of thatch-roofed wooden buildings set closely together and with winter heating by fireplaces were prone to burn, so cities needed to be rebuilt repeatedly. The biggest of those urban fires was the Meireki fire that burned half of the capital at Edo and killed 100,000 people in 1657. Much of that timber was transported to cities by coastal ships, in turn built of wood and hence consuming more wood. Still more wooden ships were required to transport Hideyoshi’s armies across the Korea Strait in his unsuccessful attempts to conquer Korea.
Timber for construction was not the only need driving deforestation. Wood was also the fuel used for heating houses, for cooking, and for industrial uses such as making salt, tiles, and ceramics. Wood was burned to charcoal to sustain the hotter fires required for smelting iron. Japan’s expanding population needed more food, and hence more forested land cleared for agriculture. Peasants fertilized their fields with “green fertilizer” (i.e., leaves, bark, and twigs), and fed their oxen and horses with fodder (brush and grass), obtained from the forests. Each acre of cropland required 5 to 10 acres of forest to provide the necessary green fertilizer. Until the civil wars ended in 1615, the warring armies under daimyo and the shogun took fodder for their horses, and bamboo for their weapons and defensive palisades, from the forests. Daimyo in forested areas fulfilled their annual obligation to the shogun in the form of timber.
The years from about 1570 to 1650 marked the peak of the construction boom and of deforestation, which slowed down as timber became scarce. At first, wood was cut either under the direct order of the shogun or daimyo, or else by peasants themselves for their local needs, but by 1660 logging by private entrepreneurs overtook government-ordered logging. For instance, when yet another fire broke out in Edo, one of the most famous of those private lumbermen, a merchant named Kinokuniya Bunzaemon, shrewdly recognized that the result would be more demand for timber. Even before the fire had been put out, he sailed off on a ship to buy up huge quantities of timber in the Kiso district, for resale at a big profit in Edo.
The first part of Japan to become deforested, already by A.D. 800, was the Kinai Basin on the largest Japanese island of Honshu, site of early Japan’s main cities such as Osaka and Kyoto. By the year 1000, deforestation was spreading to the nearby smaller island of Shikoku. By 1550 about one-quarter of Japan’s area (still mainly just central Honshu and eastern Shikoku) had been logged, but other parts of Japan still held much lowland forest and old-growth forest.
In 1582 Hideyoshi became the first ruler to demand timber from all over Japan, because timber needs for his lavish monumental construction exceeded the timber available on his own domains. He took control of some of Japan’s most valuable forests and requisitioned a specified amount of timber each year from each daimyo. In addition to forests, which the shogun and daimyo claimed for themselves, they also claimed all valuable species of timber trees on village or private land. To transport all that timber from increasingly distant logging areas to the cities or castles where the timber was needed, the government cleared obstacles from rivers so that logs could be floated or rafted down them to the coast, whence they were then transported by ships to port cities. Logging spread over Japan’s three main islands, from the southern end of the southernmost island of Kyushu through Shikoku to the northern end of Honshu. In 1678 loggers had to turn to the southern end of Hokkaido, the island north of Honshu and at that time not yet part of the Japanese state. By 1710, most accessible forest had been cut on the three main islands (Kyushu, Shikoku, and Honshu) and on southern Hokkaido, leaving old-growth forests just on steep slopes, in inaccessible areas, and at sites too difficult or costly to log with Tokugawa-era technology.
Deforestation hurt Tokugawa Japan in other ways besides the obvious one of wood shortages for timber, fuel, and fodder and the forced end to monumental construction. Disputes over timber and fuel became increasingly frequent between and within villages, and between villages and the daimyo or shogun, all of whom competed for Japan’s forests. There were also disputes between those who wanted to use rivers for floating or rafting logs, and those who instead wanted to use them for fishing or for irrigating cropland. Just as we saw for Montana in Chapter 1, wildfires increased, because the second-growth woods springing up on logged land were more flammable than were old-growth forests. Once the forest cover protecting steep slopes had been removed, the rate of soil erosion increased as a consequence of Japan’s heavy rainfall, snowmelt, and frequent earthquakes. Flooding in the lowlands due to increased water runoff from the denuded slopes, higher water levels in lowland irrigation systems due to soil erosion and river siltation, increased storm damage, and shortages of forest-derived fertilizer and fodder acted together to decrease crop yields at a time of increasing population, and thus to contribute to major famines that beset Tokugawa Japan from the late 1600s onwards.
The 1657 Meireki fire, and the resulting demand for timber to rebuild Japan’s capital, served as a wake-up call exposing the country’s growing scarcity of timber and other resources at a time when its population, especially its urban population, had been growing rapidly. That might have led to an Easter-Island-like catastrophe. Instead, over the course of the next two centuries Japan gradually achieved a stable population and much more nearly sustainable resource consumption rates. The shift was led from the top by successive shoguns, who invoked Confucian principles to promulgate an official ideology that encouraged limiting consumption and accumulating reserve supplies in order to protect the country against disaster.
Part of the shift involved increased reliance on seafood and on trade with the Ainu for food, in order to relieve the pressure on farming. Expanded fishing efforts incorporated new fishing techniques, such as very large nets and deepwater fishing. The territories claimed by individual daimyo and villages now included the sea adjacent to their land, in recognition of the sense that fish and shellfish stocks were limited and might become exhausted if anyone else could freely fish in one’s territory. Pressure on forests as a source of green fertilizer for cropland was reduced by making much more use of fish meal fertilizers. Hunting of sea mammals (whales, seals, and sea otters) increased, and syndicates were formed to finance the necessary boats, equipment, and large workforces. The greatly expanded trade with the Ainu on Hokkaido Island brought smoked salmon, dried sea cucumber, abalone, kelp, deer skins, and sea otter pelts to Japan, in exchange for rice, sake (rice wine), tobacco, and cotton delivered to the Ainu. Among the results were the depletion of salmon and deer on Hokkaido, the weaning of the Ainu away from self-sufficiency as hunters to dependence on Japanese imports, and eventually the destruction of the Ainu through economic disruption, disease epidemics, and military conquests. Thus, part of the Tokugawa solution for the problem of resource depletion in Japan itself was to conserve Japanese resources by causing resource depletion elsewhere, just as part of the solution of Japan and other First World countries to problems of resource depletion today is to cause resource depletion elsewhere. (Remember that Hokkaido was not incorporated politically into Japan until the 19th century.)
Another part of the shift consisted of the near-achievement of Zero Population Growth. Between 1721 and 1828, Japan’s population barely increased at all, from 26,100,000 to only 27,200,000. Compared to earlier centuries, Japanese in the 18th and 19th century married later, nursed their babies for longer, and spaced their children at longer intervals through the resulting lactational amenorrhea as well as through contraception, abortion, and infanticide. Those decreased birth rates represented responses of individual couples to perceived shortages of food and other resources, as shown by rises and falls in Tokugawa Japanese birth rates in phase with falls and rises in rice prices.
Still other aspects of the shift served to reduce wood consumption. Beginning in the late 17th century, Japan’s use of coal instead of wood as a fuel rose. Lighter construction replaced heavy-timbered houses, fuel-efficient cooking stoves replaced open-hearth fireplaces, small portable charcoal heaters replaced the practice of heating the whole house, and reliance on the sun to heat houses during the winter increased.
Many top-down measures were aimed at curing the imbalance between cutting trees and producing trees, initially mainly by negative measures (reducing the cutting), then increasingly by positive measures as well (producing more trees). One of the first signs of awareness at the top was a proclamation by the shogun in 1666, just nine years after the Meireki fire, warning of the dangers of erosion, stream siltation, and flooding caused by deforestation, and urging people to plant seedlings. Beginning in that same decade, Japan launched a nationwide effort at all levels of society to regulate use of its forest, and by 1700 an elaborate system of woodland management was in place. In the words of historian Conrad Totman, the system focused on “specifying who could do what, where, when, how, how much, and at what price.” That is, the first phase of the Tokugawa-era response to Japan’s forest problem emphasized negative measures that didn’t restore lumber production to previous levels, but that at least bought time, prevented the situation from getting worse until positive measures could take effect, and set ground rules for the competition within Japanese society over increasingly scarce forest products.
The negative responses aimed at three stages in the wood supply chain: woodland management, wood transport, and wood consumption in towns. At the first stage, the shogun, who directly controlled about a quarter of Japan’s forests, designated a senior magistrate in the finance ministry to be responsible for his forests, and almost all of the 250 daimyo followed suit by each appointing his own forest magistrate for his land. Those magistrates closed off logged lands to permit forest regeneration, issued licenses specifying the peasants’ rights to cut timber or graze animals on government forest land, and banned the practice of burning forests to clear land for shifting cultivation. In those forests controlled not by the shogun or daimyo but by villages, the village headman managed the forest as common property for the use of all villagers, developed rules about the harvesting of forest products, forbade “foreign” peasants of other villages to use his own village’s forest, and hired armed guards to enforce all these rules.
Both the shogun and the daimyo paid for very detailed inventories of their forests. Just as one example of the managers’ obsessiveness, an inventory of a forest near Karuizawa 80 miles northwest of Edo in 1773 recorded that the forest measured 2.986 square miles in area and contained 4,114 trees, of which 573 were crooked or knotty and 3,541 were good. Of those 4,114 trees, 78 were big conifers (66 of them good) with trunks 24-36 feet long and 6-7 feet in circumference, 293 were medium-sized conifers (253 of them good) 4-5 feet in circumference, 255 good small conifers 6-18 feet long and 1-3 feet in circumference to be harvested in the year 1778, and 1,474 small conifers (1,344 of them good) to harvest in later years. There were also 120 medium-sized ridgeline conifers (104 of them good) 15-18 feet long and 3-4 feet in circumference, 15 small ridgeline conifers 12-24 feet long and 8 inches to 1 foot in circumference to be harvested in 1778, and 320 small ridgeline conifers (241 of them good) to harvest in later years, not to mention 448 oaks (412 of them good) 12-24 feet long and 3-5-½ feet in circumference, and 1,126 other trees whose properties were similarly enumerated. Such counting represents an extreme of top-down management that left nothing to the judgment of individual peasants.
The second stage of negative responses involved the shogun and daimyo establishing guard posts on highways and rivers to inspect wood shipments and make sure that all those rules about woodland management were actually being obeyed. The last stage consisted of a host of government rules specifying, once a tree had been felled and had passed inspection at a guard post, who could use it for what purpose. Valuable cedars and oaks were reserved for government uses and were off limits to peasants. The amount of timber that you could use in building your house varied with your social status: 30 ken (one ken is a beam 6 feet long) for a headman presiding over several villages, 18 ken for such a headman’s heir, 12 ken for a headman of a single village, 8 ken for a local chief, 6 ken for a taxable peasant, and a mere 4 ken for an ordinary peasant or fisherman. The shogun also issued rules about permissible wood use for objects smaller than houses. For instance, in 1663 an edict forbade any woodworker in Edo to fabricate a small box out of cypress or sugi wood, or household utensils out of sugi wood, but permitted large boxes to be made of either cypress or sugi. In 1668 the shogun went on to ban use of cypress, sugi, or any other good tree for public signboards, and 38 years later large pines were removed from the list of trees approved for making New Year decorations.
All of these negative measures aimed at solving Japan’s forestry crisis by ensuring that wood be used only for purposes authorized by the shogun or daimyo. However, a big role in Japan’s crisis had been played by wood use by the shogun and daimyo themselves. Hence a full solution to the crisis required positive measures to produce more trees, as well as to protect land from erosion. Those measures began already in the 1600s with Japan’s development of a detailed body of scientific knowledge about silviculture. Foresters employed both by the government and by private merchants observed, experimented, and published their findings in an outpouring of silvicultural journals and manuals, exemplified by the first of Japan’s great silvicultural treatises, theNōgyō zensho of 1697 by Miyazaki Antei. There, you will find instructions for how best to gather, extract, dry, store, and prepare seeds; how to prepare a seedbed by cleaning, fertilizing, pulverizing, and stirring it; how to soak seeds before sowing them; how to protect sown seeds by spreading straw over them; how to weed the seedbed; how to transplant and space seedlings; how to replace failed seedlings over the next four years; how to thin out the resulting saplings; and how to trim branches from the growing trunk in order that it yield a log of the desired shape. As an alternative to thus growing trees from seed, some tree species were instead grown by planting cuttings or shoots, and others by the technique known as coppicing (leaving live stumps or roots in the ground to sprout).
Gradually, Japan independently of Germany developed the idea of plantation forestry: that trees should be viewed as a slow-growing crop. Both governments and private entrepreneurs began planting forests on land that they either bought or leased, especially in areas where it would be economically favorable, such as near cities where wood was in demand. On the one hand, plantation forestry is expensive, risky, and demanding of capital. There are big costs up front to pay workers to plant the trees, then more labor costs for several decades to tend the plantation, and no recovery of all that investment until the trees are big enough to harvest. At any time during those decades, one may lose one’s tree crop to disease or a fire, and the price that the lumber will eventually fetch is subject to market fluctuations unpredictable decades in advance when the seeds are planted. On the other hand, plantation forestry offers several compensating advantages compared to cutting naturally sown forests. You can plant just preferred valuable tree species, instead of having to accept whatever sprouts in the forest. You can maximize the quality of your trees and the price received for them, for instance by trimming them as they grow to obtain eventually straight and well-shaped logs. You can pick a convenient site with low transport costs near a city and near a river suitable for floating logs out, instead of having to haul logs down a remote mountainside. You can space out your trees at equal intervals, thereby reducing the costs of eventual cutting. Some Japanese plantation foresters specialized in wood for particular uses and were thereby able to command top prices for an established “brand name.” For instance, Yoshino plantations became known for producing the best staves for cedar barrels to hold sake (rice wine).
The rise of silviculture in Japan was facilitated by the fairly uniform institutions and methods over the whole country. Unlike the situation in Europe, divided at that time among hundreds of principalities or states, Tokugawa Japan was a single country governed uniformly. While southwestern Japan is subtropical and northern Japan is temperate, the whole country is alike in being wet, steep, erodable, of volcanic origins, and divided between steep forested mountains and flat cropland, thus providing some ecological uniformity in conditions for silviculture. In place of Japan’s tradition of multiple use of forests, under which the elite claimed the timber and the peasants gathered fertilizer, fodder, and fuel, plantation forest became specified as being for the primary purpose of timber production, other uses being allowed only insofar as they did not harm timber production. Forest patrols guarded against illegal logging activity. Plantation forestry thereby became widespread in Japan between 1750 and 1800, and by 1800 Japan’s long decline in timber production had been reversed.
An outside observer who visited Japan in 1650 might have predicted that Japanese society was on the verge of a societal collapse triggered by catastrophic deforestation, as more and more people competed for fewer resources. Why did Tokugawa Japan succeed in developing top-down solutions and thereby averting deforestation, while the ancient Easter Islanders, Maya, and Anasazi, and modern Rwanda (Chapter 10) and Haiti (Chapter 11) failed? This question is one example of the broader problem, to be explored in Chapter 14, why and at what stages people succeed or fail at group decision-making.
The usual answers advanced for Middle and Late Tokugawa Japan’s success—a supposed love for Nature, Buddhist respect for life, or a Confucian outlook—can be quickly dismissed. In addition to those simple phrases not being accurate descriptions of the complex reality of Japanese attitudes, they did not prevent Early Tokugawa Japan from depleting Japan’s resources, nor are they preventing modern Japan from depleting the resources of the ocean and of other countries today. Instead, part of the answer involves Japan’s environmental advantages: some of the same environmental factors already discussed in Chapter 2 to explain why Easter and several other Polynesian and Melanesian islands ended up deforested, while Tikopia, Tonga, and others did not. People of the latter islands have the good fortune to be living in ecologically robust landscapes where trees regrow rapidly on logged soils. Like robust Polynesian and Melanesian islands, Japan has rapid tree regrowth because of high rainfall, high fallout of volcanic ash and Asian dust restoring soil fertility, and young soils. Another part of the answer has to do with Japan’s social advantages: some features of Japanese society that already existed before the deforestation crisis and did not have to arise as a response to it. Those features included Japan’s lack of goats and sheep, whose grazing and browsing activities elsewhere have devastated forests of many lands; the decline in number of horses in Early Tokugawa Japan, due to the end of warfare eliminating the need for cavalry; and the abundance of seafood, relieving pressure on forests as sources of protein and fertilizer. Japanese society did make use of oxen and horses as draft animals, but their numbers were allowed to decrease in response to deforestation and loss of forest fodder, to be replaced by people using spades, hoes, and other devices.
The remaining explanations constitute a suite of factors that caused both the elite and the masses in Japan to recognize their long-term stake in preserving their own forests, to a degree greater than for most other people. As for the elite, the Tokugawa shoguns, having imposed peace and eliminated rival armies at home, correctly anticipated that they were at little risk of a revolt at home or an invasion from overseas. They expected their own Tokugawa family to remain in control of Japan, which in fact it did for 250 years. Hence peace, political stability, and well-justified confidence in their own future encouraged Tokugawa shoguns to invest in and to plan for the long-term future of their domain: in contrast to Maya kings and to Haitian and Rwandan presidents, who could not or cannot expect to be succeeded by their sons or even to fill out their own term in office. Japanese society as a whole was (and still is) relatively homogeneous ethnically and religiously, without the differences destabilizing Rwandan society and possibly also Maya and Anasazi societies. Tokugawa Japan’s isolated location, negligible foreign trade, and renunciation of foreign expansion made it obvious that it had to depend on its own resources and wouldn’t solve its needs by pillaging another country’s resources. By the same token, the shogun’s enforcement of peace within Japan meant that people knew that they couldn’t meet their timber needs by seizing a Japanese neighbor’s timber. Living in a stable society without input of foreign ideas, Japan’s elite and peasants alike expected the future to be like the present, and future problems to have to be solved with present resources.
The usual assumption of Tokugawa well-to-do peasants, and the hope of poorer villagers, were that their land would pass eventually to their own heirs. For that and other reasons, the real control of Japan’s forests fell increasingly into the hands of people with a vested long-term interest in their forest: either because they thus expected or hoped their children would inherit the rights to its use, or because of various long-term lease or contract arrangements. For instance, much village common land became divided into separate leases for individual households, thereby minimizing the tragedies of the common to be discussed in Chapter 14. Other village forests were managed under timber sale agreements drawn up long in advance of logging. The government negotiated long-term contracts on government forest land, dividing eventual timber proceeds with a village or merchant in return for the latter managing the forests. All these political and social factors made it in the interests of the shogun, daimyo, and peasants to manage their forests sustainably. Equally obviously after the Meireki fire, those factors made short-term overexploitation of forests foolish.
Of course, though, people with long-term stakes don’t always act wisely. Often they still prefer short-term goals, and often again they do things that are foolish in both the short term and the long term. That’s what makes biography and history infinitely more complicated and less predictable than the courses of chemical reactions, and that’s why this book doesn’t preach environmental determinism. Leaders who don’t just react passively, who have the courage to anticipate crises or to act early, and who make strong insightful decisions of top-down management really can make a huge difference to their societies. So can similarly courageous, active citizens practicing bottom-up management. The Tokugawa shoguns, and my Montana landowner friends committed to the Teller Wildlife Refuge, exemplify the best of each type of management, in pursuit of their own long-term goals and of the interests of many others.
In thus devoting one chapter to these three success stories of the New Guinea highlands, Tikopia, and Tokugawa Japan, after seven chapters mostly on societies brought down by deforestation and other environmental problems plus a few other success stories (Orkney, Shetland, Faeroes, Iceland), I’m not implying that success stories constitute rare exceptions. Within the last few centuries Germany, Denmark, Switzerland, France, and other western European countries stabilized and then expanded their forested area by top-down measures, as did Japan. Similarly, about 600 years earlier, the largest and most tightly organized Native American society, the Inca Empire of the Central Andes with tens of millions of subjects under an absolute ruler, carried out massive reafforestation and terracing to halt soil erosion, increase crop yields, and secure its wood supplies.
Examples of successful bottom-up management of small-scale farming, pastoral, hunting, or fishing economies also abound. One example that I briefly mentioned in Chapter 4 comes from the U.S. Southwest, where Native American societies far smaller than the Inca Empire attempted many different solutions to the problem of developing a long-lasting economy in a difficult environment. The Anasazi, Hohokam, and Mimbres solutions eventually came to an end, but the somewhat different Pueblo solution has now been operating in the same region for over a thousand years. While the Greenland Norse disappeared, the Greenland Inuit maintained a self-sufficient hunter-gatherer economy for at least 500 years, from their arrival by A.D. 1200 until the disruptions caused by Danish colonization beginning in A.D. 1721. After the extinction of Australia’s Pleistocene megafauna around 46,000 years ago, Aboriginal Australians maintained hunter-gatherer economies until European settlement in A.D. 1788. Among the numerous, self-sustaining, small-scale rural societies in modern times, especially well-studied ones include communities in Spain and in the Philippines maintaining irrigation systems, and Swiss alpine villages operating mixed farming and pastoral economies, in both cases for many centuries and with detailed local agreements about managing communal resources.
Each of these cases of bottom-up management that I have just mentioned involves a small society holding exclusive rights to all economic activities on its lands. Interesting and more complex cases exist (or traditionally existed) on the Indian subcontinent, where the caste system instead operates to permit dozens of economically specialized sub-societies to share the same geographic area by carrying out different economic activities. Castes trade extensively with each other and often live in the same village but are endogamous—i.e., people generally marry within their caste. Castes coexist by exploiting different environmental resources and lifestyles, such as by fishing, farming, herding, and hunting/gathering. There is even finer specialization, e.g., with multiple castes of fishermen fishing by different methods in different types of waters. As in the case of Tikopians and of the Tokugawa Japanese, members of the specialized Indian castes know that they can count on only a circumscribed resource base to maintain themselves, but they expect to pass those resources on to their children. Those conditions have fostered the acceptance of very detailed societal norms by which members of a given caste ensure that they are exploiting their resources sustainably.
The question remains why these societies of Chapter 9 succeeded while most of the societies selected for discussion in Chapters 2-8 failed. Part of the explanation lies in environmental differences: some environments are more fragile and pose more challenging problems than do others. We already saw in Chapter 2 the multitude of reasons causing Pacific island environments to be more or less fragile, and explaining in part why Easter and Mangareva societies collapsed while Tikopia society didn’t. Similarly, the success stories of the New Guinea highlands and Tokugawa Japan recounted in this chapter involved societies that enjoyed the good fortune to be occupying relatively robust environments. But environmental differences aren’t the whole explanation, as proved by the cases, such as those of Greenland and the U.S. Southwest, in which one society succeeded while one or more societies practicing different economies in the same environment failed. That is, not only the environment, but also the proper choice of an economy to fit the environment, is important. The remaining large piece of the puzzle involves whether, even for a particular type of economy, a society practices it sustainably. Regardless of the resources on which the economy rests—farmed soil, grazed or browsed vegetation, a fishery, hunted game, or gathered plants or small animals—some societies evolve practices to avoid overexploitation, and other societies fail at that challenge. Chapter 14 will consider the types of mistakes that must be avoided. First, however, the next four chapters will examine four modern societies, for comparison with the past societies that we have been discussing since Chapter 2.