CHAPTER 12
China’s significance ■ Background ■ Air, water, soil ■ Habitat, species, megaprojects ■ Consequences ■ Connections ■ The future ■
China is the world’s most populous country, with about 1,300,000,000 people, or one-fifth of the world’s total. In area it is the third largest country, and in plant species diversity the third richest. Its economy, already huge, is growing at the fastest rate of any major country: nearly 10% per year, which is four times the growth rate of First World economies. It has the world’s highest production rate of steel, cement, aquacultured food, and television sets; both the highest production and the highest consumption of coal, fertilizers, and tobacco; it stands near the top in production of electricity and (soon) motor vehicles, and in consumption of timber; and it is now building the world’s largest dam and largest water-diversion project.
Marring these superlatives and achievements, China’s environmental problems are among the most severe of any major country, and are getting worse. The long list ranges from air pollution, biodiversity losses, cropland losses, desertification, disappearing wetlands, grassland degradation, and increasing scale and frequency of human-induced natural disasters, to invasive species, overgrazing, river flow cessation, salinization, soil erosion, trash accumulation, and water pollution and shortages. These and other environmental problems are causing enormous economic losses, social conflicts, and health problems within China. All these considerations alone would suffice to make the impact of China’s environmental problems on just the Chinese people a subject of major concern.
But China’s large population, economy, and area also guarantee that its environmental problems will not remain a domestic issue but will spill over to the rest of the world, which is increasingly affected through sharing the same planet, oceans, and atmosphere with China, and which in turn affects China’s environment through globalization. China’s recent entry into the World Trade Organization will expand those exchanges with other countries. For instance, China is already the largest contributor of sulfur oxides, chlorofluorocarbons, other ozone-depleting substances, and (soon) carbon dioxide to the atmosphere; its dust and aerial pollutants are transported eastwards in the atmosphere to neighboring countries and even to North America; and it is one of the two leading importers of tropical rainforest timber, making it a driving force behind tropical deforestation.
Even more important than all those other impacts will be the proportionate increase in total human impact on the world’s environments if China, with its large population, succeeds in its goal of achieving First World living standards—which also means catching up to the First World’s per-capita environmental impact. As we shall see in this chapter and again in Chapter 16, those differences between First and Third World living standards, and the efforts of China and other developing countries to close that gap, have big consequences that unfortunately are usually ignored. China will also illustrate other themes of this book: the dozen groups of environmental problems facing the modern world, to be detailed in Chapter 16, and all of them serious or extreme in China; the effects of modern globalization on environmental problems; the importance of environmental issues for even the biggest of all modern societies, and not just for the small societies selected as illustrations in most of my book’s other chapters; and realistic grounds for hope, despite a barrage of depressing statistics. After setting out some brief background information about China, I shall discuss the types of Chinese environmental impacts, their consequences for the Chinese people and for the rest of the world, and China’s responses and future prognosis.
Let’s begin with a quick overview of China’s geography, population trends, and economy (map, p. 361). The Chinese environment is complex and locally fragile. Its diverse geography includes the world’s highest plateau, some of the world’s highest mountains, two of the world’s longest rivers (the Yangtze and Yellow Rivers), many lakes, a long coastline, and a large continental shelf. Its diverse habitats range from glaciers and deserts to tropical rainforests. Within those ecosystems lie areas fragile for different reasons: for example, northern China has highly variable rainfall, plus simultaneous occurrences of winds and droughts, that make its high-altitude grasslands susceptible to dust storms and soil erosion, while conversely southern China is wet but has heavy rainstorms that cause erosion on slopes.
As for China’s population, the two best-known facts about it are that it is the world’s largest, and that the Chinese government (uniquely in the modern world) instituted mandatory fertility control that dramatically decreased the population growth rate to 1.3% per year by the year 2001. That raises the question whether China’s decision will be imitated by other countries, some of which, while recoiling in horror at that solution, may thereby find themselves drifting into even worse solutions to their population problems.
Less well known, but with significant consequences for China’s human impacts, is that the number of China’s households has nevertheless been growing at 3.5% per year over the last 15 years, more than double the growth rate of its population during the same period. That’s because household size decreased from 4.5 people per house in 1985 to 3.5 in 2000 and is projected to decrease further to 2.7 by the year 2015. That decreased household size causes China today to have 80 million more households than it would otherwise have had, an increase exceeding the total number of households in Russia. The household size decrease results from social changes: especially, population aging, fewer children per couple, an increase in previously nearly non-existent divorce, and a decline in the former custom of multi-generation households with grandparents, parents, and children living under one roof. At the same time, per-capita floor area per house increased by nearly three-fold. The net result of those increases in the number and floor area of households is that China’s human impact is increasing despite its low population growth rate.
The remaining feature of China’s population trends worth stressing is rapid urbanization. From 1953 to 2001, while China’s total population “only” doubled, the percentage of its population that is urban tripled from 13 to 38%, hence the urban population increased seven-fold to nearly half a billion. The number of cities quintupled to almost 700, and existing cities increased greatly in area.
For China’s economy, the simplest short descriptor is “big and fast-growing.” China is the world’s largest producer and consumer of coal, accounting for one-quarter of the world’s total. It is also the world’s largest producer and consumer of fertilizer, accounting for 20% of world use, and for 90% of the global increase in fertilizer use since 1981, thanks to a quintupling of its own fertilizer use, now three times the world average per acre. As the second largest producer and consumer of pesticides, China accounts for 14% of the world total and has become a net exporter of pesticides. On top of that, China is the largest producer of steel, the largest user of agricultural films for mulching, the second largest producer of electricity and chemical textiles, and the third largest oil consumer. In the last two decades, while its production of steel, steel products, cement, plastics, and chemical fiber were increasing 5-, 7, 10-, 19-, and 30-fold respectively, its washing machine output increased 34,000 times.
Pork used to be overwhelmingly the main meat in China. With increasing affluence, demand for beef, lamb, and chicken products has increased rapidly, to the point where per-capita egg consumption now equals that of the First World. Per-capita consumption of meat, eggs, and milk increased four-fold between 1978 and 2001. That means much more agricultural waste, because it takes 10 or 20 pounds of plants to produce one pound of meat. The annual output of animal droppings on land is already three times the output of industrial solid wastes, to which should be added the increase in fish droppings and fish food and fertilizer for aquaculture, tending to increase terrestrial and aquatic pollution respectively.
China’s transportation network and vehicle fleet have grown explosively. Between 1952 and 1997 the length of railroads, motor roads, and airline routes increased 2.5-, 10-, and 108-fold. The number of motor vehicles (mostly trucks and buses) increased 15-fold between 1980 and 2001, cars 130-fold. In 1994, after the number of motor vehicles had increased 9 times, China decided to make car production one of its four so-called pillar industries, with the goal of increasing production (now especially of cars) by another factor of 4 by the year 2010. That would make China the world’s third largest vehicle manufacturing country, after the U.S. and Japan. Considering how bad the air quality already is in Beijing and other cities, due mostly to motor vehicles, it will be interesting to see what urban air quality is like in 2010. The planned increase in motor vehicles will also impact the environment by requiring more land conversion into roads and parking lots.
Behind those impressive statistics on the scale and growth of China’s economy lurks the fact that much of it is based on outdated, inefficient, or polluting technology. China’s energy efficiency in industrial production is only half that of the First World; its paper production consumes more than twice as much water as in the First World; and its irrigation relies on inefficient surface methods responsible for water wastage, soil nutrient losses, eutrophication, and river sediment loads. Three-quarters of China’s energy consumption depends on coal, the main cause of its air pollution and acid rain and a significant cause of inefficiency. For instance, China’s coal-based production of ammonia, required for fertilizer and textile manufacture, consumes 42 times more water than natural-gas-based ammonia production in the First World.
Another distinctive inefficient feature of China’s economy is its rapidly expanding small-scale rural economy: its so-called township and village enterprises, or TVEs, with an average of only six employees per enterprise, and especially involved in construction and in producing paper, pesticides, and fertilizer. They account for one-third of China’s production and half of its exports but contribute disproportionately to pollution in the form of sulfur dioxide, waste water, and solid wastes. Hence in 1995 the government declared an emergency and banned or closed 15 of the worst-polluting types of small-scale TVEs.
China’s history of environmental impacts has gone through phases. Even already by several thousand years ago, there was large-scale deforestation. After the end of World War II and the Chinese Civil War, the return of peace in 1949 brought more deforestation, overgrazing, and soil erosion. The years of the Great Leap Forward, from 1958 to 1965, saw a chaotic increase in the number of factories (a four-fold increase in the two-year period 1957-1959 alone!), accompanied by still more deforestation (to obtain the fuel needed for inefficient backyard steel production) and pollution. During the Cultural Revolution of 1966-1976, pollution spread still further, as many factories were relocated to deep valleys and high mountains from coastal areas considered vulnerable in case of war. Since economic reform began in 1978, environmental degradation has continued to increase or accelerate. China’s environmental problems can be summarized under six main headings: air, water, soil, habitat destruction, biodiversity losses, and megaprojects.
To begin with China’s most notorious pollution problem, its air quality is dreadful, symbolized by now-familiar photographs of people having to wear face masks on the streets of many Chinese cities (Plate 25). Air pollution in some cities is the worst in the world, with pollutant levels several times higher than levels considered safe for people’s health. Pollutants such as nitrogen oxides and carbon dioxide are rising due to the increasing numbers of motor vehicles and the coal-dominated energy generation. Acid rain, confined in the 1980s to just a few areas in the southwest and south, has spread over much of the country and is now experienced in one-quarter of Chinese cities for more than half of the rainy days each year.
Similarly, water quality in most Chinese rivers and groundwater sources is poor and declining, due to industrial and municipal waste water discharges, and agricultural and aquacultural runoffs of fertilizers, pesticides, and manure causing widespread eutrophication. (That term refers to growth of excessive algal concentrations as a result of all that nutrient runoff.) About 75% of Chinese lakes, and almost all coastal seas, are polluted. Red tides in China’s seas—blooms of plankton whose toxins are poisonous to fish and other ocean animals—have increased to nearly 100 per year, from only one in every five years in the 1960s. The famous Guanting Reservoir in Beijing was declared unsuitable for drinking in 1997. Only 20% of domestic waste water is treated, as compared to 80% in the First World.
Those water problems are exacerbated by shortages and waste. By world standards, China is poor in fresh water, with a quantity per person only one-quarter of the world average value. Making matters worse, even that little water is unevenly distributed, with North China having only one-fifth the per-capita water supply of South China. That underlying water shortage, plus wasteful use, causes over 100 cities to suffer from severe water shortages and occasionally even halts industrial production. Of the water required for cities and for irrigation, two-thirds depends on groundwater pumped from wells tapping aquifers. However, those aquifers are becoming depleted, permitting seawater to enter them in most coastal areas, and causing land to sink under some cities as the aquifers are becoming emptied. China also already has the world’s worst problem of cessation of river flows, and that problem is becoming much worse because water continues to be drawn from rivers for use. For instance, between 1972 and 1997 there were flow stoppages on the lower Yellow River (China’s second longest river) in 20 out of the 25 years, and the number of days without any flow increased from 10 days in 1988 to the astonishing total of 230 days in 1997. Even on the Yangtze and Pearl Rivers in wetter South China, flow cessation happens during the dry season and impedes ship navigation.
China’s soil problems start with its being one of the world’s countries most severely damaged by erosion (Plate 26), now affecting 19% of its land area and resulting in soil loss at 5 billion tons per year. Erosion is especially devastating on the Loess Plateau (the middle stretch of the Yellow River, about 70% of the plateau eroded), and increasingly on the Yangtze River, whose sediment discharge from erosion exceeds the combined discharges of the Nile and Amazon, the world’s two longest rivers. By filling up China’s rivers (as well as its reservoirs and lakes), sediment has shortened China’s navigable river channels by 50% and restricted the size of ships that can use them. Soil quality and fertility as well as soil quantity have declined, partly because of long-term fertilizer use plus pesticide-related drastic declines in soil-renewing earthworms, thereby causing a 50% decrease in the area of cropland considered to be of high quality. Salinization, whose causes will be discussed in detail in the next chapter (Chapter 13) on Australia, has affected 9% of China’s lands, mainly due to poor design and management of irrigation systems in dry areas. (This is one environmental problem that government programs have made good progress in combating and starting to reverse.) Desertification, due to overgrazing and land reclamation for agriculture, has affected more than one-quarter of China, destroying about 15% of North China’s area remaining for agriculture and pastoralism within the last decade.
All of these soil problems—erosion, fertility losses, salinization, and desertification—have joined urbanization and land appropriation for mining, forestry, and aquaculture in reducing China’s area of cropland. That poses a big problem for China’s food security, because at the same time as its cropland has been declining, its population and per-capita food consumption have been increasing, and its area of potentially cultivatable land is limited. Cropland per person is now only 0.1 hectare, barely half of the world average, and nearly as low as the value for Northwest Rwanda discussed in Chapter 10. In addition, because China recycles very little trash, huge quantities of industrial and domestic trash are dumped into open fields, polluting soil and taking over or damaging cropland. More than two-thirds of China’s cities are now surrounded by trash whose composition has changed dramatically from vegetable leftovers, dust, and coal residues to plastics, glass, metal, and wrapping paper. As my Dominican friends envisioned for their country’s future (Chapter 11), a world buried in garbage will figure prominently in China’s future as well.
Discussions of habitat destruction in China begin with deforestation. China is one of the world’s most forest-poor countries, with only 0.3 acres of forest per person compared to a world average of 1.6, and with forests covering only 16% of China’s land area (compared to 74% of Japan’s). While government efforts have increased the area of single-species tree plantations and thereby slightly increased the total area considered forested, natural forests, especially old-growth forests, have been shrinking. That deforestation is a major contributor to China’s soil erosion and floods. After the great floods of 1996 had caused $25 billion in damages, the even bigger 1998 floods that affected 240 million people (one-fifth of China’s population) shocked the government into action, including the banning of any further logging of natural forests. Along with climate change, deforestation has probably contributed to China’s increasing frequency of droughts, which now affect 30% of its cropland each year.
The other two most serious forms of habitat destruction in China besides deforestation are destruction or degradation of grasslands and wetlands. China is second only to Australia in the extent of its natural grasslands, which cover 40% of its area, mainly in the drier north. However, because of China’s large population, that translates into a per-capita grassland area less than half of the world average. China’s grasslands have been subject to severe damage by overgrazing, climate change, and mining and other types of development, so that 90% of China’s grasslands are now considered degraded. Grass production per hectare has decreased by about 40% since the 1950s, and weeds and poisonous grass species have spread at the expense of high-quality grass species. All that degradation of grassland has implications extending beyond the mere usefulness to China of grassland for food production, because China’s grasslands of the Tibetan Plateau (the world’s largest high-altitude plateau) are the headwaters for major rivers of India, Pakistan, Bangladesh, Thailand, Laos, Cambodia, and Vietnam as well as of China. For example, grassland degradation has increased the frequency and severity of floods on China’s Yellow and Yangtze Rivers, and has also increased the frequency and severity of dust storms in eastern China (notably in Beijing, as seen by television viewers around the world).
Wetlands have been decreasing in area, their water level has been fluctuating greatly, their capacity to mitigate floods and to store water has decreased, and wetland species have become endangered or extinct. For example, 60% of the swamps in the Sanjian Plain in the northeast, the area with China’s largest freshwater swamps, have already been converted to farmland, and at the present ongoing rate of drainage the 8,000 square miles remaining of those swamps will disappear within 20 years.
Other biodiversity losses with big economic consequences include the severe degradation of both freshwater and coastal marine fisheries by overfishing and pollution, because fish consumption is rising with growing affluence. Per-capita consumption increased nearly five-fold in the past 25 years, and to that domestic consumption must be added China’s growing exports of fish, molluscs, and other aquatic species. As a result, the white sturgeon has been pushed to the brink of extinction, the formerly robust Bohai prawn harvest declined 90%, formerly abundant fish species like the yellow croaker and hairtail must now be imported, the annual take of wild fish in the Yangtze River has declined 75%, and that river had to be closed to fishing for the first time ever in 2003. More generally, China’s biodiversity is very high, with over 10% of the world’s plant and terrestrial vertebrate species. However, about one-fifth of China’s native species (including its best-known one, the Giant Panda) are now endangered, and many other distinctive rare ones (such as Chinese Alligators and ginkgos) are already at risk of extinction.
The flip side of these declines in native species has been a rise in invasive species. China has had a long history of intentionally introducing species considered beneficial. Now, with the recent 60-fold increase in international trade, those intentional introductions are being joined by accidental introductions of many species that no one would consider beneficial. For example, in Shanghai Harbor alone between 1986 and 1990, examination of imported materials carried by 349 ships from 30 countries revealed as contaminants almost 200 species of foreign weeds. Some of those invasive plants, insects, and fish have gone on to establish themselves as pests and weeds causing huge economic damage to Chinese agriculture, aquaculture, forestry, and livestock production.
If all that were not enough, under way in China are the world’s largest development projects, all expected to cause severe environmental problems. The Three Gorges Dam of the Yangtze River—the world’s largest dam, started in 1993 and projected for completion in 2009—aims to provide electricity, flood control, and improved navigation at a financial cost of $30 billion, social costs of uprooting millions of people, and environmental costs associated with soil erosion and the disruption of a major ecosystem (that of the world’s third longest river). Still more expensive is the South-to-North Water Diversion Project, which began in 2002, is not scheduled for completion until around 2050, and is projected to cost $59 billion, to spread pollution, and to cause water imbalance in China’s longest river. Even that project will be exceeded by the projected development of currently underdeveloped western China, making up over half of the country’s land area and viewed by China’s leaders as the key to national development.
Let’s now pause to distinguish, as elsewhere in this book, between consequences for animals and plants by themselves, and consequences for people. Recent developments in China are clearly bad news for Chinese earthworms and yellow croakers, but how much difference does it all make for Chinese people? The consequences for them can be partitioned into economic costs, health costs, and exposure to natural disasters. Here are some estimates or examples for each of those three categories.
As examples of economic costs, let’s start with small ones and proceed to larger ones. A small cost is the mere $72 million per year being spent to curb the spread of a single weed, the alligator weed that was introduced from Brazil as pig forage and escaped to infest gardens, sweet potato fields, and citrus groves. Also a bargain is the annual loss of just $250 million arising from factory closures due to water shortages in a single city, Xian. Sandstorms inflict damage of about $540 million per year, and losses of crops and forests due to acid rain amount to about $730 million per year. More serious are the $6 billion costs of the “green wall” of trees being built to shield Beijing against sand and dust, and the $7 billion per year of losses created by pest species other than alligator weed. We enter the zone of impressive numbers when we consider the onetime cost of the 1996 floods ($27 billion, but still cheaper than the 1998 floods), the annual direct losses due to desertification ($42 billion), and the annual losses due to water and air pollution ($54 billion). The combination of the latter two items alone costs China the equivalent of 14% of its gross domestic product each year.
Three items may be selected to give an indication of health consequences. Average blood lead levels in Chinese city-dwellers are nearly double the levels considered elsewhere in the world to be dangerously high and to put at risk the mental development of children. About 300,000 deaths per year, and $54 billion of health costs (8% of the gross national product), are attributed to air pollution. Smoking deaths amount to about 730,000 per year and are rising, because China is the world’s largest consumer and producer of tobacco and is home to the most smokers (320 million of them, one-quarter of the world’s total, smoking an average of 1,800 cigarettes per year per person).
China is noted for the frequency, number, extent, and damage of its natural disasters. Some of these—especially dust storms, landslides, droughts, and floods—are closely related to human environmental impacts and have become more frequent as those impacts have increased. For instance, dust storms have increased in frequency and severity as more land has been laid bare by deforestation, overgrazing, erosion, and partly human-caused droughts. From A.D. 300 to 1950 dust storms used to afflict northwestern China on the average once every 31 years; from 1950 to 1990, once every 20 months; and since 1990, almost every year. The huge dust storm of May 5, 1993, killed about a hundred people. Droughts have increased because of deforestation interrupting the rain-producing natural hydrological cycle, and perhaps also because of the draining and overuse of lakes and wetlands and hence the decrease in water surfaces for evaporation. The area of cropland damaged each year by droughts is now about 60,000 square miles, double the annual area damaged in the 1950s. Flooding has greatly increased because of deforestation; the 1996 and 1998 floods were the worst in recent memory. The alternating occurrence of droughts and floods has also become more frequent and is more damaging than either disaster alone, because droughts first destroy vegetation cover, then floods on bare ground cause worse erosion than would have been the case otherwise.
Even if China’s people had no connection through trade and travel with people elsewhere, China’s large territory and population would guarantee effects on other peoples merely because China is releasing its wastes and gases into the same ocean and atmosphere. But China’s connections to the rest of the world through trade, investment, and foreign aid have been accelerating almost exponentially in the last two decades, although trade (now $621 billion per year) was negligible before 1980 and foreign investment in China still negligible as recently as 1991. Among other consequences, the development of export trade has been a driving force behind increased pollution in China, because the highly polluting and inefficient little rural industries (the TVEs) that produce half of China’s exports in effect ship their finished products abroad but leave behind their pollutants in China. In 1991 China became the country annually receiving the second highest amount of foreign investment behind the U.S., and in 2002 China moved into first place by receiving record investments of $53 billion. Foreign aid between 1981 and 2000 included $100 million from international NGOs, a large sum as measured by NGO budgets but a paltry amount compared to China’s other sources: half a billion dollars from the United Nations Development program, $10 billion from Japan’s International Development Agency, $11 billion from the Asian Development Bank, and $24 billion from the World Bank.
All of those transfers of money contribute to fueling China’s rapid economic growth and environmental degradation. Let’s now consider other ways in which the rest of the world influences China, then how China influences the rest of the world. These reciprocal influences are aspects of the modern buzzword “globalization,” which is important for the purposes of this book. The interconnectedness of societies in today’s world causes some of the most important differences (to be explored in Chapter 16) between how environmental problems played out in the past on Easter Island or among the Maya and Anasazi, and how they play out today.
Among the bad things that China receives from the rest of the world, I already mentioned economically damaging invasive species. Another large-scale import that will surprise readers is garbage (Plate 27). Some First World countries reduce their mountains of garbage by paying China to accept untreated garbage, including wastes containing toxic chemicals. In addition, China’s expanding manufacturing economy and industries accept garbage/scrap that could serve as cheap sources of recoverable raw materials. Just to take one item as an example, in September 2002 a Chinese customs office in Zhejiang Province recorded a 400-ton shipment of “electronic garbage” originating from the U.S., and consisting of scrap electronic equipment and parts such as broken or obsolete color TV sets, computer monitors, photocopiers, and keyboards. While statistics on the amount of such garbage imported are inevitably incomplete, available numbers show an increase from one million to 11 million tons from 1990 to 1997, and an increase in First World garbage transshipped to China via Hong Kong from 2.3 to over 3 million tons per year from 1998 to 2002. This represents direct transfer of pollution from the First World to China.
Even worse than garbage, while many foreign companies have helped China’s environment by transferring advanced technology to China, others have hurt it by transferring pollution-intensive industries (PIIs), including technologies now illegal in the country of origin. Some of these technologies are then in turn transferred from China to still less developed countries. As one example, in 1992 the technology for producing Fuyaman, a pesticide against aphids banned in Japan 17 years earlier, was sold to a Sino-Japanese joint company in Fujian Province, where it proceeded to poison and kill many people and to cause serious environmental pollution. In Guangdong Province alone the amount of ozone-destroying chlorofluorocarbons imported by foreign investors reached 1,800 tons in 1996, thereby making it more difficult for China to eliminate its contribution to world ozone destruction. As of 1995, China was home to an estimated 16,998 PII firms with a combined industrial product of about $50 billion.
Turning now from China’s imports to its exports in a broad sense, China’s high native biodiversity means that China gives back to other countries many invasive species that were already well adapted to competing in China’s species-rich environment. For instance, the three best-known pests that have wiped out numerous North American tree populations—the chestnut blight, the misnamed “Dutch” elm disease, and the Asian long-horned beetle—all originated in China or else somewhere nearby in East Asia. Chestnut blight already wiped out native chestnut trees in the U.S.; Dutch elm disease has been eliminating the elm trees that used to be a hallmark of New England towns while I was growing up there over 60 years ago; and the Asian long-horned beetle, first discovered in the U.S. in 1996 attacking maple and ash trees, has the potential for causing U.S. tree losses of up to $41 billion, more than those due to the other two of those pests combined. Another recent arrival, China’s grass carp, is now established in rivers and lakes of 45 U.S. states, where it competes with native fish species and causes large changes in aquatic plant, plankton, and invertebrate communities. Still another species of which China has an abundant population, which has large ecological and economic impacts, and which China is exporting in increasing numbers is Homo sapiens. For instance, China has now moved into third place as a source of legal immigration into Australia (Chapter 13), and significant numbers of illegal as well as legal immigrants crossing the Pacific Ocean reach even the U.S.
While inadvertently or intentionally exported Chinese insects, freshwater fish, and people reach overseas countries by ship and plane, other inadvertent exports arrive in the atmosphere. China became the world’s largest producer and consumer of gaseous ozone-depleting substances, such as chlorofluorocarbons, after First World countries phased them out in 1995. China also now contributes to the atmosphere 12% of the world’s carbon dioxide emissions that play a major role in global warming. If current trends continue—emissions rising in China, steady in the U.S., declining elsewhere—China will become the world’s leader in carbon dioxide emissions, accounting for 40% of the world’s total, by the year 2050. China already leads the world in production of sulfur oxides, with an output double that of the U.S. Propelled eastwards by winds, the pollutant-laden dust, sand, and soil originating from China’s deserts, degraded pastures, and fallow farmland get blown to Korea, Japan, Pacific islands, and across the Pacific within a week to the U.S. and Canada. Those aerial particles are the result of China’s coal-burning economy, deforestation, overgrazing, erosion, and destructive agricultural methods.
The next exchange between China and other countries involves an import doubling as an export: imported timber, hence exported deforestation. China ranks third in the world in timber consumption, because wood provides 40% of the nation’s rural energy in the form of firewood, and provides almost all the raw material for the paper and pulp industry and also the panels and lumber for the construction industry. But a growing gap has been developing between China’s increasing demand for wood products and its declining domestic supply, especially since the national logging ban went into effect after the floods of 1998. Hence China’s wood imports have increased six-fold since the ban. As an importer of tropical lumber from countries on all three continents that span the tropics (especially from Malaysia, Gabon, Papua New Guinea, and Brazil), China now stands second only to Japan, which it is rapidly overtaking. It also imports timber from the temperate zone, especially from Russia, New Zealand, the U.S., Germany, and Australia. With China’s entrance into the World Trade Organization, those timber imports are expected to increase even more, because tariffs on wood products are about to be reduced from a rate of 15-20% to 2-3%. In effect, this means that China, like Japan, will be conserving its own forests, but only by exporting deforestation to other countries, several of which (including Malaysia, Papua New Guinea, and Australia) have already reached or are on the road to catastrophic deforestation.
Potentially more important than all of these other impacts is a rarely discussed consequence of the aspirations of China’s people, like other people in developing countries, to a First World lifestyle. That abstract phrase means many specific things to an individual Third World citizen: acquiring a house, appliances, utensils, clothes, and consumer products manufactured commercially by energy-consuming processes, not made at home or locally by hand; having access to manufactured modern medicines, and to doctors and dentists educated and equipped at much expense; eating abundant food grown at high production rates with synthetic fertilizers, not with animal manure or plant mulches; eating some industrially processed food; traveling by motor vehicle (preferably one’s own car), not by walking or bicycle; and having access to other products manufactured elsewhere and arriving by motor vehicle transport, not just to local products carried to consumers. All Third World peoples of whom I am aware—even those trying to retain or re-create some of their traditional lifestyle—also value at least some elements of this First World lifestyle.
The global consequences of everybody aspiring to the lifestyle currently enjoyed by First World citizens are well illustrated by China, because it combines the world’s largest population with the fastest-growing economy. Total productions or consumptions are products of population sizes times per-capita production or consumption rates. For China, those total productions are already high because of its huge population, and despite its per-capita rates still being very low: for instance, only 9% of per-capita consumption rates of the leading industrial countries in the case of four major industrial metals (steel, aluminum, copper, and lead). But China is progressing rapidly towards its goal of achieving a First World economy. If China’s per-capita consumption rates do rise to First World levels, and even if nothing else about the world changed—e.g., even if population and production/consumption rates everywhere else remained unchanged—then that production/consumption rate increase alone would translate (as multiplied by China’s population) into an increase in total world production or consumption of 94% in that same case of industrial metals. In other words, China’s achievement of First World standards will approximately double the entire world’s human resource use and environmental impact. But it is doubtful whether even the world’s current human resource use and impact can be sustained. Something has to give way. That is the strongest reason why China’s problems automatically become the world’s problems.
China’s leaders used to believe that humans can and should conquer Nature, that environmental damage was a problem affecting only capitalist societies, and that socialist societies were immune to it. Now, facing overwhelming signs of China’s own severe environmental problems, they know better. The shift in thinking began as early as 1972, when China sent a delegation to the First United Nations Conference on the Human Environment. The year 1973 saw the establishment of the government’s so-called Leading Group for Environmental Protection, which morphed in 1998 (the year of the great floods) into the State Environmental Protection Administration. In 1983 environmental protection was declared a basic national principle—in theory. In reality, although much effort has been made to control environmental degradation, economic development still takes priority and remains the chief criterion for evaluating government officials’ performance. Many environmental protection laws and policies that have been adopted on paper are not effectively implemented or enforced.
What does the future hold for China? Of course, the same question arises everywhere in the world: the development of environmental problems is accelerating, the development of attempted solutions is also accelerating, which horse will win the race? In China this question has special urgency, not only because of China’s already-discussed scale and impact on the world, but also because of a feature of Chinese history that may be termed “lurching.” (I use this term in its neutral strict sense of “swaying suddenly from side to side,” not in its pejorative sense of the gait of a drunk person.) By this metaphor, I am thinking of what seems to me the most distinctive feature of Chinese history, which I discussed in my earlier book Guns, Germs, and Steel. Because of geographic factors—such as China’s relatively smooth coastline, its lack of major peninsulas as large as Italy and Spain/Portugal, its lack of major islands as large as Britain and Ireland, and its parallel-flowing major rivers—China’s geographic core was unified already in 221 B.C. and has remained unified for most of the time since then, whereas geographically fragmented Europe has never been unified politically. That unity enabled China’s rulers to command changes over a larger area than any European ruler could ever command—both changes for the better, and changes for the worse, often in rapid alternation (hence “lurching”). China’s unity and decisions by emperors may contribute to explaining why China at the time of Renaissance Europe developed the world’s best and largest ships, sent fleets to India and Africa, and then dismantled those fleets and left overseas colonization to much smaller European states; and why China began, and then did not pursue, its own incipient industrial revolution.
The strengths and risks of China’s unity have persisted into recent times, as China continues to lurch on major policies affecting its environment and its population. On the one hand, China’s leaders have been able to solve problems on a scale scarcely possible for European and American leaders: for instance, by mandating a one-child policy to reduce population growth, and by ending logging nationally in 1998. On the other hand, China’s leaders have also succeeded in creating messes on a scale scarcely possible for European and American leaders: for instance, by the chaotic transition of the Great Leap Forward, by dismantling the national educational system in the Cultural Revolution, and (some would say) by the emerging environmental impacts of the three megaprojects.
As for the outcome of China’s current environmental problems, all one can say for sure is that things will get worse before they get better, because of time lags and the momentum of damage already under way. One big factor acting both for the worse and for the better is the anticipated increase in China’s international trade as a result of its joining the World Trade Organization (WTO), thereby lowering or abolishing tariffs and increasing exports and imports of cars, textiles, agricultural products, and many other commodities. Already, China’s export industries tend to send manufactured finished products overseas and to leave in China the pollutants involved in their manufacture; there will presumably now be more of that. Some of China’s imports, such as garbage and cars, have already been bad for the environment; there may be more of that too. On the other hand, some countries belonging to the WTO adhere to environmental standards much stricter than China’s, and that will force China to adopt those international standards as a condition of its exports being admitted by those countries. More agricultural imports may permit China to decrease its use of fertilizers, pesticides, and low-productivity cropland, while importation of oil and natural gas will let China decrease pollution from its burning of coals. A two-edged consequence of WTO membership may be that, by increasing imports and thereby decreasing Chinese domestic production, it will merely enable China to transfer environmental damage from China itself to overseas, as has already happened in the shift from domestic logging to imported timber (thereby in effect paying countries other than China to suffer the harmful consequences of deforestation).
A pessimist will note many dangers and bad harbingers already operating in China. Among generalized dangers, economic growth rather than environmental protection or sustainability is still China’s priority. Public environmental awareness is low, in part because of China’s low investment in education, less than half that of First World countries as a proportion of gross national production. With 20% of the world’s population, China accounts for only 1% of the world’s outlay on education. A college or university education for children is beyond the means of most Chinese parents, because one year’s tuition would consume the average salary of one city worker or three rural workers. China’s existing environmental laws were largely written piecemeal, lack effective implementation and evaluation of long-term consequences, and are in need of a systems approach: for instance, there is no overall framework for protection of China’s rapidly vanishing wetlands, despite individual laws affecting them. Local officials of China’s State Environmental Protection Administration (SEPA) are appointed by local governments rather than by upper-level officials of the SEPA itself, so that local governments often block enforcement of national environmental laws and regulations. Prices for important environmental resources are set so low as to encourage waste: e.g., a ton of Yellow River water for use in irrigation costs only between and
of a small bottle of spring water, thereby removing any financial incentive for irrigation farmers to conserve water. Land is owned by the government and is leased by farmers, but may be leased to a series of different farmers within a short time span, so that farmers lack incentive to make long-term investments in their land or to take good care of it.
The Chinese environment also faces more specific dangers. Already under way are a big increase in the number of cars, the three megaprojects, and the rapid disappearance of wetlands, whose harmful consequences will continue to accumulate in the future. The projected decrease in Chinese household size to 2.7 people by the year 2015 will add 126 million new households (more than the total number of U.S. households), even if China’s population size itself remains constant. With growing affluence and hence growing meat and fish consumption, environmental problems from meat production and aquaculture, such as pollution from all the animal and fish droppings and eutrophication from uneaten feed for fish, will increase. Already, China is the world’s largest producer of aquaculture-grown food, and is the sole country in which more fish and aquatic foods are obtained from aquaculture than from wild fisheries. The world consequences of China’s catching up to First World levels of meat consumption exemplify the broader issue, which I already illustrated by metal consumption, of the current gap between per-capita First World and Third World consumption and production rates. China will of course not tolerate being told not to aspire to First World levels. But the world cannot sustain China and other Third World countries and current First World countries all operating at First World levels.
Offsetting all of those dangers and discouraging signs, there are also important promising signs. Both WTO membership and the impending 2008 Olympic Games in China have spurred the Chinese government to pay more attention to environmental problems. For instance, a $6 billion “green wall” or tree belt is now under development around Beijing to protect the city against dust and sandstorms. To reduce air pollution in Beijing, its city government ordered that motor vehicles be converted to permit the use of natural gas and liquefied petroleum gas. China phased out lead in gasoline in little more than a year, something that Europe and the U.S. took many years to achieve. It recently decided to establish fuel efficiency minima for automobiles including even SUVs. New cars are required to meet exacting emission standards prevailing in Europe.
China is already making a big effort to protect its outstanding biodiversity with 1,757 nature reserves covering 13% of its land area, not to mention all of its zoos, botanical gardens, wildlife breeding centers, museums, and gene and cell banks. China uses some distinctive, environmentally friendly, traditional technologies on a large scale, such as the common South Chinese practice of raising fish in irrigated rice fields. That recycles the fish droppings as natural fertilizer, increases rice production, uses fish to control insect pests and weeds, decreases herbicide and pesticide and synthetic fertilizer use, and yields more dietary protein and carbohydrate without increasing environmental damage. Encouraging signs in reafforestation are the initiation of major tree plantations in 1978, and in 1998 the national ban on logging and the start of the Natural Forest Conservation Program to reduce the risk of further destructive flooding. Since 1990, China has combatted desertification on 15,000 square miles of land by reafforestation and fixation of sand dunes. The Grain-to-Green program, begun in 2000, gives grain subsidies to farmers who convert cropland to forest or grassland, and is thereby reducing the use of environmentally sensitive steep hillsides for agriculture.
How will it all end up? Like the rest of the world, China is lurching between accelerating environmental damage and accelerating environmental protection. China’s large population and large growing economy, and its current and historic centralization, mean that China’s lurches involve more momentum than those of any other country. The outcome will affect not just China, but the whole world as well. While I was writing this chapter, I found my own feelings lurching between despair at the mind-numbing litany of depressing details, and hope inspired by the drastic and rapidly implemented measures of environmental protection that China has already adopted. Because of China’s size and its unique form of government, top-down decision-making has operated on a far larger scale there than anywhere else, utterly dwarfing the impacts of the Dominican Republic’s President Balaguer. My best-case scenario for the future is that China’s government will recognize that its environmental problems pose an even graver threat that did its problem of population growth. It may then conclude that China’s interests require environmental policies as bold, and as effectively carried out, as its family planning policies.