PROLOGUE
concerning ten thousand years, a hundred lineages, and two revolutions
ON THE GROUND FLOOR of the Science Museum in London’s South Kensington neighborhood, on a low platform in the center of the gallery called “Making of the Modern World,” is the most famous locomotive ever built.
Or what remains of it. Rocket, the black and sooty machine on display, designed and built in 1829 by the father and son engineers George and Robert Stephenson, no longer much resembles the machine that inaugurated the age of steam locomotion. Its return pipes are missing. The pistons attached to the two driving wheels are no longer at the original angle. The yellow paint that made it shine like the sun nearly two centuries ago is now not even a memory. Even so, the technology represented in the six-foot-long boiler, the linkages, the flanged wheels, and even in the track on which it rode are essentially the same as those it used in 1829. In fact, they are the same as those used for more than a century of railroading.
The importance of Rocket doesn’t stop there. While the machine does, indeed, mark the inauguration of something pretty significant—two centuries of mass transportation—it also marks a culmination. Standing in front of Rocket, a museum visitor can, with a little imagination, see the thousand threads that lead from the locomotive back to the very beginning of the modern world. One such thread can be walked back to the first metalworkers who figured out how to cast the iron cylinders that drove Rocket’s wheels. Another leads to the discovery of the fuel that boiled the water inside that iron boiler. A third—the shortest, but probably the thickest—leads back to the discovery that boiling water could somehow be transformed into motion. One thread is, actually, thread: Rocket was built to transport cotton goods—the signature manufactured item of the first era of industrialization—from Manchester to Liverpool.
Most of the threads leading from Rocket are fairly straightforward, but one—the most interesting one—forms a knot: a puzzle. The puzzle of Rocket is why it was built to travel from Manchester to Liverpool, and not from Paris to Toulouse, or Mumbai to Benares, or Beijing to Hangzhou. Or, for that matter, since the world’s first working model of a steam turbine was built in first-century Alexandria, why Rocket started making scheduled round trips at the beginning of the nineteenth century instead of the second.
Put more directly, why did this historical discontinuity called the Industrial Revolution—sometimes the “First” Industrial Revolution—occur when and where it did?*
The importance of that particular thread seems self-evident. At just around the time Rocket was being built, the world was experiencing not only a dramatic change in industry—what The Oxford English Dictionary calls “the rapid development in industry1 owing to the employment of machinery”—but also a transition to industry (or an industrial economy) from agriculture. Combining the two was not only revolutionary; it was unique.
“Revolutionary” and “unique” are both words shiny with overuse. Every century in human history is, in some sense, unique, and every year, somewhere in the world, something revolutionary seems to happen. But while love affairs, epidemics, art movements, and wars are all different, their effects almost always follow one familiar pattern or another. And no matter how transformative such events have been in the lives of individuals, families, or even nations, only twice in the last ten thousand years has something happened that truly transformed all of humanity.
The first occurred about 10,000 BCE and marks the discovery, by a global human population then numbering fewer than five million, that they could cultivate their own food. This was unarguably a world changer. Once humanity was tethered to the ground where its food grew, settled societies developed; and in them, hierarchies. The weakest members of those hierarchies depended on the goodwill of the strongest, who learned to operate the world’s longest-lasting protection racket. Settlements became towns, towns became kingdoms, kingdoms became empires.
However, by any quantifiable measure, including life span, calories consumed, or child mortality, the lived experience of virtually all of humanity didn’t change much for millennia after the Agricultural (sometimes known as the Neolithic) Revolution spread around the globe. Aztec peasants, Babylonian shepherds, Athenian stonemasons, and Carolingian merchants spoke different languages,2 wore different clothing, and prayed to different deities, but they all ate the same amount of food, lived the same number of years, traveled no farther—or faster—from their homes, and buried just as many of their children. Because while they made a lot more children—worldwide population grew a hundredfold between 5000 BCE and 1600 CE, from 5 to 500 million—they didn’t make much of anything else. The best estimates for human productivity (a necessarily vague number) calculate annual per capita GDP, expressed in constant 1990 U.S. dollars, fluctuating between $400 and $550 for seven thousand years. The worldwide per capita GDP in 800 BCE3—$543—is virtually identical to the number in 1600. The average person of William Shakespeare’s time lived no better than his counterpart in Homer’s.
The first person to explain why the average human living in the seventeenth century was as impoverished as his or her counterpart in the seventh was the English demographer Thomas Malthus, whose Essay on the Principle of Population demonstrated that throughout human history, population had always increased faster than the food supply. Seeking the credibility of a mathematical formula (this is a constant trope in the history of social science), he argued that population, unless unchecked by war, famine, epidemic disease, or similarly unappreciated bits of news, always increased geometrically, while the resources needed by that population, primarily food, always increased arithmetically.* The “Malthusian trap”—the term has been in general use for centuries—ensured that though mankind regularly discovered or invented more productive ways of feeding, clothing, transporting or (more frequently) conquering itself, the resulting population increase quickly consumed all of the surplus, leaving everyone in precisely the same place as before. Or frequently way behind, as populations exploded and then crashed when the food ran out. Lewis Carroll’s Red Queen might have written humanity’s entire history on the back of a matchbook: “Here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that.”
This is why Rocket’s moment in history is unique. That soot-blackened locomotive sits squarely at the deflection point where a line describing human productivity (and therefore human welfare) that had been flat as Kansas for a hundred centuries made a turn like the business end of a hockey stick. Rocket is when humanity finally learned how to run twice as fast.
It’s still running today. If you examined the years since 1800 in twenty-year increments, and charted every way that human welfare can be expressed in numbers—not just annual per capita GDP, which climbed to more than $6,000 by 2000, but mortality at birth (in fact, mortality at any age); calories consumed; prevalence of infectious disease; average height of adults; percentage of lifetime spent disabled; percentage of population living in poverty; number of rooms per person; percentage of population enrolled in primary, secondary, and postsecondary education; illiteracy; and annual hours of leisure time—the chart will show every measure better at the end of the period than it was at the beginning. And the phenomenon isn’t restricted to Europe and North America; the same improvements have occurred in every region of the world. A baby born in France in 1800 could expect to live thirty years—twenty-five years less than a baby born in the Republic of the Congo in 2000. The nineteenth-century French infant4 would be at significantly greater risk of starvation, infectious disease, and violence, and even if he or she were to survive into adulthood, would be far less likely to learn how to read.
Think of it another way. A skilled laborer—a weaver, perhaps, or a blacksmith—in seventeenth-century England, France, or China spent roughly the same number of hours a week at his trade, producing about the same number of bolts of cloth, or nails, as his ten-times great-grandfather did during the time of Augustus. He earned the same number of coins a day and bought the same amount, and variety, of food. His wife, like her ten-times great-grandmother, prepared the food; she might have bought her bread from a village baker, but she made pretty much everything herself. She even made her family’s clothing, which, allowing for the vagaries of weather and fashion, was largely indistinguishable from those of any family for the preceding ten centuries: homespun wool, with some linen if flax were locally available. The laborer and his wife would have perhaps eight or ten live offspring, with a reasonable chance that three might survive to adulthood. If the laborer chose to travel, he would do it on foot or, if he were exceptionally prosperous, by horse-drawn cart or coach, traveling three miles an hour if the former, or seven if the latter—again, the same as his ancestor—which meant that his world was not much larger than the five or six miles surrounding the place he was born.
And then, for the first time in history, things changed. And they changed at the most basic of levels. A skilled fourth-century weaver5 in the city of Constantinople might earn enough by working three hours to purchase a pound of bread; by 1800, it would cost a weaver working in Nottingham at least two. But by 1900,6 it took less than fifteen minutes to earn enough to buy the loaf; and by 2000, five minutes. It is a cliché, but nonetheless true, to recognize that a middle-class family living in a developed twenty-first-century country enjoys a life filled with luxuries that a king could barely afford two centuries ago.
This doesn’t mean the transformation happened suddenly. A small but vocal minority of scholars doubts the reality of anything revolutionary, or even industrial, about the phenomenon. Recent studies have demonstrated far less growth in productivity and incomes during the period 1760–1820 than once thought, partly because the income of preindustrial Europe was a lot higher than previously believed. And indeed, Europe, from at least the ninth century onward, had urban centers, roads, and huge amounts of trade traveling along the latter to the former.
On the other hand, the fact that the transformation happened over the course of a century doesn’t make it any less revolutionary. Clearly, something happened.
Not everyone believes that the something is the contraption sitting in that gallery in the Science Museum. There are, by popular consensus, more than two hundred different theories in general circulation purporting to explain the Industrial Revolution. They include the notion, first popularized by the pioneer sociologist Max Weber, that the Protestantism of Northern Europe was more congenial to innovation than Chinese Confucianism, or the Catholicism of France and Southern Europe. Or that China’s lack of access to raw materials, particularly coal, sabotaged an Asian Industrial Revolution. For those of a certain mindset, there is a theory that England’s absence of internal tariffs and deficiency in landholding peasantry made the leap to industrialization a short one. Was industrialization the result of revenue from overseas colonies? Relatively high labor costs among the lower classes? Relatively large families among the upper classes? Class conflict? The lack of class conflict?
All of these explanations, even when reduced to bumper sticker size, are in some sense true. There are dozens of ways to untie a knot, and many will be referred to in later chapters of this book. Their only real liability, in fact, is that they tend to understate the most obvious explanation, which is that the Industrial Revolution was, first and foremost, a revolution in invention. And not simply a huge increase in the number of new inventions, large and small, but a radical transformation in the process of invention itself.
Given the importance of mechanical invention to every generation of humanity since some anonymous Sumerians stuck a pole through the center of a hollow tree trunk and rolled the first wheel past their neighbors, it’s somewhat puzzling that it took so long to come up with a useful theory of just what invention is. Contemporary cognitive scientists have proposed a dozen different strategies and typologies of invention, but one of the most influential remains the eighty-year-old theory of an economic historian with the Dickensian name of Abbott Payson Usher.
Though dense, out of date, and little consulted today, The History of Mechanical Inventions, published by the then forty-six-year-old Usher in 1929, documents, at sometimes exhausting length, the ways in which humanity has engaged in a continuous process of improving life by inventing machines, from the earliest plows used by Middle Eastern farmers to the ships, engines, and railroads of the mid-nineteenth century (though, interestingly enough, not the age of electricity during which Usher wrote). Like Origin of Species, whose theory was buttressed by thousands of examples from the world of nature, The History of Mechanical Inventions contains an imposing list of examples, from the harnesses worn by prehistoric draft animals, Egyptian waterwheels and hand querns, to antique beam presses, medieval grain mills, water clocks, and, of course, the steam engine. But it does more than just chronicle human ingenuity. It also presents what is still the most analytically persuasive historical theory of invention: Usher, more than anyone else, gives us a toolkit that can be used to analyze and describe just how Rocket (and its component parts) was imagined, designed, and constructed.
Before Usher, historians of science hadn’t wandered very far from the same two paths that general historians had trod before them. The first is popularly known as the “Great Man” theory of history, in which events are understood through the actions of a few major actors—in this context, the “Great Inventor” theory—while the second perceives those same events as consequences of immutable laws of history; for the history of science and technology, this frequently meant explaining things as a sort of evolution of inventions by natural selection. Usher hated them both. He was, philosophically and temperamentally, a small-d democrat who was utterly convinced that the ability to invent was widely distributed among ordinary people, and that the impulse to invent was everywhere.
If the phenomenon of invention were as natural as breathing, one might expect that it would—like breathing—behave pretty much the same whether it occurred in second-century Egypt or eighteenth-century England, and so indeed it did for Usher. To him, every invention inevitably followed a four-step sequence:
1. Awareness of an unfulfilled need;
2. Recognition of something contradictory or absent in existing attempts to meet the need, which Usher called an “incomplete pattern”;
3. An all-at-once insight about that pattern; and
4. A process of “critical revision” during which the insight is tested, refined, and perfected.
Usher is an invaluable guide to the world of inventing, and in the pages that follow, his step-by-step description of the inventive process will be referred to many times. But precisely because his sequence applies to everything from Neolithic digging sticks to automated looms, it cannot explain why—in the unforgettable line of the imagined schoolboy introducing T. S. Ashton’s short but indispensable history of the Industrial Revolution—“About 1760, a wave of gadgets swept over England.”7 If the process of thinking up “gadgets” was, at bottom, the same for Archimedes, Leonardo, and James Watt, why did it take until the middle of the eighteenth century for a trickle to become a wave?
Even defining the Industrial Revolution as a wave of gadgets doesn’t, by itself, place steam power—Rocket’s motive force—at the crest of that wave. After all, the early decades of European industrialization were largely driven by water and wind rather than steam. As late as 1800, Britain’s water mills were producing more than three times as much power as its steam engines, and this book could, conceivably, have begun not with Rocket, but with another display in the “Making of the Modern World” gallery: Richard Arkwright’s cotton spinning machine, known as the “water frame” because of its power source.* Nonetheless, the steam engine was the signature gadget of the Industrial Revolution, though not because it represented a form of power not dependent on muscle; both waterwheels and windmills had already done that. Nor was it the steam engine’s enormous capacity for rapid improvement—far greater than either water or wind power.
The real reason steam power dominates every history of the Industrial Revolution is its central position connecting the era’s technological and economic innovations: the hub through which the spokes of coal, iron, and cotton were linked. The steam engine was first invented to drain the mines that produced the coal burned in the engine itself. Iron foundries were built to supply the boilers for the steam engines that operated forges and blast furnaces. Cotton traveled to the British Isles on steamships, was spun into cloth by steam-powered mills, and was brought to market by steam locomotives. Thousands of innovations were necessary to create steam power, and thousands more were utterly dependent upon it, from textile factories—soon enough, even the water frame was steam-driven—to oceangoing ships to railroads. After thousands of years of searching for a perpetual motion machine, the inventors of the steam engine at Rocket’s heart created something even better: a perpetual innovation machine, in which each new invention sparked the creation of a newer one, ad—so far, anyway—infinitum.
Perpetual technological innovation is so much a part of contemporary life that it is difficult even to imagine the world without it. It is the modern world, however, that is historically anomalous. Hundreds of different cultures had experienced bursts of inventiveness and economic growth before the eighteenth century—bursts they were unable to sustain for more than a century or so. Imagine, for example, how different the last eight hundred years might have been had the Islamic Golden Age—whose inventors were responsible for everything from crankshaft-driven windmills and water turbines to the world’s most advanced mechanical clocks—survived the thirteenth century. Instead, like all the world’s earlier explosions of invention, it, in the words of one of the phenomenon’s most acute observers, “fizzled out.”8 One unique characteristic of the eighteenth-century miracle was that it was the first that didn’t.
The other one, and the real reason that the threads leading from Rocket form such a challenging knot, is that the miracle was, overwhelmingly, produced by English-speaking people. Rocket incorporates hundreds of inventions, small and large—safety valves, feedback controls, return flues, condensers—to say nothing of the iron foundries and coal mines that supplied its raw materials. If one could magically edit out those steam engines invented in Italy, or Sweden, or—more important—France, or China, Rocketwould still run. If the same magic were applied to those invented in England, Scotland, Wales, and America, the platform in the Science Museum would be empty.
That is a puzzle for which there is no shortage of proposed solutions (see Industrial Revolution, Theories of, above). The one proposed by the book you hold in your hands can be boiled down to this: The best explanation for the preeminence of English speakers in lifting humanity out of its ten-thousand-year-long Malthusian trap is that the Anglophone world democratized the nature of invention.
Even simpler: Before the eighteenth century, inventions were either created by those wealthy enough to do so as a leisure activity (or to patronize artisans to do so on their behalf), or they were kept secret for as long as possible. In England, a unique combination of law and circumstance gave artisans the incentive to invent, and in return obliged them to share the knowledge of their inventions. Virginia Woolf’s famous observation—that “on or about December, 1910, human character changed”—was not only cryptic, but about a century off. Or maybe two. Human character (or at least behavior) was changed, and changed forever, by seventeenth-century Britain’s insistence that ideas were a kind of property. This notion is as consequential as any idea in history. For while the laws of nature place severe limits on the total amount of gold, or land, or any other traditional form of property, there are (as it turned out) no constraints at all on the number of potentially valuable ideas. The result was that an entire nation’s unpropertied populace was given an incentive to produce them, and to acquire the right to exploit them.
OBSERVE ANY GROUP OF people, and you can, if you’re so inclined, find clues to their ancestry in their hair or skin color. Examine blood or skin cells under a microscope, and you can learn still more; sequence your subjects’ DNA, and you’ll know quite a bit indeed, including the portion of the planet where their many-times great-grandparents lived, and genetic relationships between and among them.
Stand in front of Rocket, and you’ll likely see “only” a rather complicated machine. But examine it with a historian’s microscope, and it will become clear that the “genetic sequence”* of the locomotive, and of the Industrial Revolution it exemplifies, comprises a hundred lineages taken from a dozen different disciplines, as ornate and as complicated as the family tree of a European royal family. The birth of steam depended on a new understanding of the nature of air, and its absence; on an empirical, not yet scientific, understanding of thermodynamics; and on a new language of mechanics describing how matter moves other matter. It was utterly dependent on a new “iron age” inaugurated by several generations of a single English family; a change in the understanding of national wealth, itself a contribution from the Scottish Enlightenment, and of the special character of water as a medium for storing and releasing heat. Perhaps the most important father of the steam engine was the notion that ideas were property, itself the progeny of one of England’s greatest jurists, and her most famous political philosopher. The threads tied to Rocketlead back to an Oxford college and a Birmingham factory, to Shropshire forges and Cornish mines, to a Yorkshire monastery and a Virginia flour mill, to a Westminster courtroom and a Piccadilly locksmith. Those threads end at some of history’s great eureka moments: an Edinburgh professor’s discovery of carbon dioxide; an expatriate American’s demonstration that heat and motion are two ways of thinking about the same thing; even a Greek fisherman’s discovery of a first-century calculating machine. All of them—metallurgy and legal advocacy, chemistry and kinematics, physics and economics—are on display in the pages that follow.
But most of these pages are about invention itself. No one can stand in front of Rocket for long without pondering the history of this peculiarly human activity, its psychology, economics, and social context. The narrative of steam may be constrained by the limits of mechanics, but it is defined by the behavior of inventors, and the pages that follow attempt to explore not only what inventors actually do, but what happens inside their skulls while they do it, touching on recent discoveries in neurobiology, cognitive science, and evolutionary sociology.
Ever since humanity became bipedal, it has invented things. Stone tools in east Africa 2.4 million years ago, pottery in Anatolia eight thousand years ago. Five thousand years later, Archytas of Tarentum described the pulley, and Archimedes—probably—invented the lever, screw, and wedge. For a thousand centuries, the equation that represented humanity’s rate of invention could be plotted on an X-Y graph as a pretty straight line; sometimes a little steeper, sometimes flat. Then, during a few decades of the eighteenth and nineteenth centuries, in an island nation with no special geographic resource, a single variable changed in that equation. The result was a machine that changed everything, up to and including the idea of invention itself. The components of Rocket, and therefore the Industrial Revolution, are not gears, levers, and boilers, but ideas about gears, levers, and boilers—the most important ideas since the discovery of agriculture.
But here is the difference: Many societies discovered agriculture independently, from the Fertile Crescent to the Yangtze to the Indus River Valley. The miracle of sustainable innovation has a single source, a single time and place where mankind first made the connection between invention, power, and wealth, and discovered the most powerful idea in the world.
* The term didn’t really start to get traction until 1884, when a collection of lectures given by the economic historian Arnold Toynbee (the uncle of the famous one) at Balliol College starting in 1878 was posthumously published under the title Lectures on the Industrial Revolution of the 18th Century in England, Popular Addresses, Notes, and Other Fragments. This post hoc designation does have some arbitrariness to it; the most frequent textbook dates for the Industrial Revolution, 1760–1820, are a consequence of the fact that Toynbee’s ostensible lecture subject was George III, whose regnal dates they are.
* “Geometric” and “arithmetic” are Malthus’s terms; the modern equivalents are “exponential” and “linear.”
* For more about Arkwright—much more, in fact—see chapter 10.
* The term is a favorite of A. P. Usher.
You can support our site by clicking on this link and watching the advertisement.