There is one more way in which gas production resembled the making of the atomic bomb: both enterprises called academic science into wartime service to the state, on an enormous scale and in several countries at once. This observation raises the important question of how, or whether, the scientific republic can survive the harnessing of science to a nation’s foray into war. Scientists need cooperation to do their work. They also need the freedom to pursue mysteries, wherever they might reside, and without regard for the possible political consequences of their discoveries. The mythical scientist is both sustained by colleagues and freed by the beneficence of the scientific republic. In the lab he seeks only truth. Values, in theory, do not interest the scientist, nor do political agendas, righteous or unrighteous causes, or the concerns of statesmen and -women. The mythical scientist is not, of course, without political feeling or ambition; it is simply that she would separate these things from the pursuit of results in the lab.
In reality, though, scientists at nearly all times and in all places have depended not only on colleagues but on support from the institutions they serve, including governments. The scientific republic is necessarily circumscribed by the requirement that scientists live in one or another country, whatever their feeling about nationalism. One can claim to practice value-free science and to serve no political master. But, whatever the scientist’s indifference to the state, the state is likely to be interested in him, especially if he is a chemist or physicist working on some form of military apparatus. The level of state interest and the degree to which the state might act on it depend on the state’s institutions and relations between political, economic, and scientific elites. Etel Solingen has proposed what she terms ‘a crude fourfold typology’ to describe twentieth-century states and predict how they would treat their scientists. Her political axis includes ‘pluralist’ and ‘noncompetitive’ (that is, ‘autocratic’), her economic axis ‘market-oriented’ and ‘centrally planned.’ Let us choose one pre-Second World War example from the two opposite ends of Solingen’s four categories and in this way examine the influence of state form on scientific communities.27
We can begin with the Soviet Union, a ‘noncompetitive centrally planned’ state. The Russian tsars mistrusted science, discerning in it the impulse toward free enquiry, modernization, and democracy, all of which they regarded with suspicion. The Bolsheviks, who took power in 1917, had a different view. Marxism itself purported to be scientific, and the Bolsheviks’ tenuous hold on authority through the early 1920s made pragmatists of them—after signing the humiliating Treaty of Brest-Litovsk with the Germans in 1918, Lenin said grimly that ‘it is necessary to master the highest technology or be crushed’. That did not mean that the new government had a policy toward science in mind. And, despite their ideological and practical embrace of science, the Bolsheviks were wary of ‘bourgeois’ scientists themselves, which feeling was mutual. Through the 1920s, with the Communists preoccupied with fending off their enemies and building the economy, scientists enjoyed reasonable autonomy, and their numbers and organizations and status grew.28
This began to change at the end of Bolshevism’s first decade in power, as Josef Stalin solidified his control of the Soviet state. Scientists were told to submit five-year research plans that could grow to hundreds of anxious pages of self-explanation. Scientific professional societies, which had proliferated during the 1920s, were now increasingly absorbed by the scientific apparatus of the state and subsequently eliminated altogether. The Party insisted that scientific research have as its object the improvement of industry. Basic research was starved out, or at least left hungry, leaving only ‘applied science’ as having some obvious benefit to the nation’s political economy. The Party also reined in scientists’ travel to international conferences, prevented to some extent their receipt of scientific journals published abroad, and impeded generally contacts between Soviet scientists and their counterparts elsewhere. Those with foreign training or monied backgrounds were isolated, harried from their posts, or shunted off to Stalin’s Gulag. Certain kinds of science were condemned as anti-proletariat; ‘pure science’ was deemed effete, and thus useless, or worse, to the purposes of the revolution. (This ‘Proletkultist’ movement would win its greatest victory after the Second World War, when the pseudoscientist Trofim Lysenko eliminated the serious study of genetics in the Soviet Union. This ‘rejection of the gene’, as Paul R. Josephson has called it, lasted until 1965.)29
The development of the ‘noncompetitive centrally planned’ state in the Soviet Union had particular impact on the physics community. During the First World War the physicist Abram Ioffe created, in Petrograd (soon to be renamed Leningrad), the State Physiotechnical X-Ray Institute. Ioffe’s institute would become the ‘forge’ of Soviet nuclear physics. The first chair of its nuclear department was Igor Kurchatov, a bearish and humorous scientist who in the early 1930s immersed himself in the growing scholarship on nuclear physics and thereafter built a proton accelerator at the institute—though he changed course when he read about the Italian Enrico Fermi’s revolutionary work with neutrons. By the middle of the decade, a British physicist pointed to four international centers for nuclear research: the Cavendish, Fermi’s lab in Rome, Paris (wherein worked Marie Curie’s daughter Irene and her husband, Frederic Joliot), and ‘Kurchatov and his people’, who were ‘not far behind us considering the time difference in receiving journals’. The institute physicists would eventually be awarded by the People’s Commissariat of Heavy Industry a cyclotron, a magnetic, circular accelerator of subatomic particles.30
How much faster Kurchatov and his colleagues might have gone had they not been restricted by their government’s rigidity and suspicion is difficult to say. Travel to the West was curtailed: Peter Kapitsa was prevented from returning to the Cavendish in 1934, and Kurchatov was not allowed to accept an invitation to Berkeley, where Ernest Lawrence was pioneering particle acceleration techniques, in the winter of 1934-5. Soviet travel restrictions worked in the other direction, too. David Holloway has noted that, at the annual Soviet nuclear conference in 1933, half the papers were presented by non-Soviet scientists. Four years later, just five of the twenty-eight papers were given by non-Soviets, and by 1938 no one from abroad participated in the meeting at all. The extraordinary sensitivity of nuclear physics saved the physics community from the utter devastation that would be suffered by the biologists under Lysenko. But these conditions were not enough to keep scores of the most talented physicists from being arrested, sent to the Gulag, or shot. Research nevertheless went on. In David Holloway’s judgment, ‘Soviet physics reached a high standard in the 1930s’—testament to the intelligence and determination of people working under a government both authoritarian and capricious.31
The United States during the interwar period represents, following Solingen’s typology, a pluralist state with a market-oriented economy—the opposite, in other words, of the Soviet Union. Daniel Kevles has traced the developing relationship between American physicists and the state, and in particular the association made between the scientists’ work and national security, beginning during the First World War. This affiliation was by no means inevitable. Like all scientists, American physicists cherish their independence and do not lack for ego. ‘The vehemence of conviction, the pride of authorship burn as fiercely among scientists as among any creative workers,’ noted the eminent chemist and scientific administrator James Conant. There existed a tension between the physicists’ view that, in a free society, they ought to be able to follow whatever scientific paths they chose, and the government’s view that resources must go first to those engaged in what it considered to be useful work for the state. In times of national emergency, when US security is threatened, these visions may coincide. In June 1916, prodded by President Woodrow Wilson and its own foreign secretary, the astronomer George Ellery Hale, the National Academy of Sciences formed the National Research Council (NRC), which promised to support scientific research aimed at ‘the national security and welfare’. Some scientists objected; one, a pacifist, branded the NRC ‘militaristic’. But, when the United States went to war with Germany in April 1917, most physicists resolved to help in the effort. American scientists devised new and more effective ways to detect German submarines, worked with allies’ models to develop a system to pinpoint the location of enemy artillery, and, as noted, explored a new generation of chemical weapons, including how to deliver and protect against them. Thomas Edison, notes Kevles, ‘fashioned some forty-five devices for the military’, all, in Edison’s view, ‘perfectly good’, though none was used. The war, as Hale put it, had ‘forced science to the front’.32
Not for all time. Democracies are generally quick to demobilize after wars end, their citizens returning to peacetime pursuits and frequently with expressions of regret for time lost to militancy. Scientists determined to do their duty in wartime (and no doubt excited by the quick application of their work) balked after the Armistice at the discipline and secrecy imposed on them by military authorities. American scientists were not shot for alleged ideological crimes, but they had sometimes felt themselves bullied and disrespected by high-handed officers. The generals, for their part, had tired of civilian independence, insubordination, and impracticality. In the military’s parlance, the scientists were ‘damn professors’, useful if paying attention to realities, but too often inclined to loose gossip and head in the clouds theorizing.33
Science, including physics, nevertheless proved popular in America during the 1920s. George Hale persuaded philanthropists to finance a science school in Pasadena called the California Institute of Technology. It quickly attracted top physicists—it would share Robert Oppenheimer with Berkeley—and drove other universities to expand their physics programs in response. Exciting discoveries inside the atom raised the visibility and glamor level of the physicists, even if most laypersons failed to grasp the essence of atomic science. The federal government funded research, and state legislatures boosted the budgets of their home universities. Most of all, the market worked to the considerable advantage of scientists generally. ‘Science is not a thing apart,’ insisted the Saturday Evening Post in 1922. ‘It is the bedrock of business.’ By the latter part of the 1920s, the United States was spending $200 million each year on scientific research, with industry spending three times as much as the government. A cult of admiration, even affection, emerged around Albert Einstein, the exponent of the theory of relativity and German émigré who settled permanently at the Institute for Advanced Study at Princeton in 1933. Einstein was more rumpled than glamorous, but that proved no obstacle to the chemist and scientific popularizer Edwin Slosson, who wrote in 1925 (and apparently not about Einstein) that scientists were as ‘cleanshaven, as youthful, and as jazzy as a foregathering of Rotarians’.34
What the market provided for American scientists during the 1920s it took away during the 1930s. With the onset of the Great Depression in 1929, funding for physics research, both government and private, dried up. Kevles summarizes the damage: federal government scientists were fired in droves, AT and T sacked 40 percent and General Electric 50 percent of their lab workers; untenured university faculty feared for their jobs and senior faculty had difficulty finding positions for their students; NRC fellowships grew scarce. Along with that, many Americans bizarrely blamed scientists for plunging the nation into penury. Humanist critics decried the nation’s over-reliance on science and technology; with efficient machines had come less work for men and women. Religious critics saw in the disaster evidence that science, not God, had gained control of the American mind, with predictably awful results. Across the country rolled a wave of recrimination directed at scientists, in whose hands so many had recently and gratefully placed their fate.35
The situation for scientists in the United States would improve dramatically, of course, with the arrival of the Second World War and the end of the depression in the early 1940s. Public esteem for physicists in particular would grow once more, while federal funding would increase with the demand for new weapons and military countermeasures. In Stalin’s Soviet Union scientists served at the pleasure of the state, especially after the mid-i930s. In the United States scientists negotiated a system that was at once more benign and complex. They could do whatever research pleased them, as long as they could interest the government, a university, or industry sufficiently to fund their projects. Failure to achieve significant results was disappointing, but it was unlikely to mean arrest. In times of national emergency, and war in particular, scientists’ value to the state made their status skyrocket—until such time as their own scruples, or the end of the war, or the generals’ suspicion of them, highlighted their desire for independent research and thus their long-term unreliability as agents of a specific national cause. American scientists were subject to the market, the state, and their own ambitions, with all the freedom and uncertainty such relationships implied.